Tao Jiang, Yongchang Zhang, Shengan Zhang, Shengnan Li
{"title":"Model-free predictive rotor current control of DFIGs based on an adaptive ultra-local model under nonideal power grids","authors":"Tao Jiang, Yongchang Zhang, Shengan Zhang, Shengnan Li","doi":"10.1049/rpg2.13053","DOIUrl":null,"url":null,"abstract":"<p>The traditional control method of doubly fed induction generators (DFIGs) has poor robustness due to the excessive use of machine parameters, and does not fully consider the control conditions of nonideal power grids, resulting in serious fluctuations in current and power under grid disturbances. To solve these problems, model-free predictive rotor current control (MFPRCC) based on an ultra-local model is proposed in this article. The ultra-local model is adaptive because it can accurately emulate the overall structure of the system and estimate the total disturbance of the system in real time. Under a nonideal grid, the cascaded delayed signal cancellation (CDSC) modules are connected in series behind the outer power loop to extract the fundamental component of the rotor current reference. The proposed method is compared with the traditional model predictive rotor current control (MPRCC) method, and the effectiveness of the proposed method is verified on a 1.5 kW DFIG experimental platform.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"18 12","pages":"1986-1996"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13053","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13053","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The traditional control method of doubly fed induction generators (DFIGs) has poor robustness due to the excessive use of machine parameters, and does not fully consider the control conditions of nonideal power grids, resulting in serious fluctuations in current and power under grid disturbances. To solve these problems, model-free predictive rotor current control (MFPRCC) based on an ultra-local model is proposed in this article. The ultra-local model is adaptive because it can accurately emulate the overall structure of the system and estimate the total disturbance of the system in real time. Under a nonideal grid, the cascaded delayed signal cancellation (CDSC) modules are connected in series behind the outer power loop to extract the fundamental component of the rotor current reference. The proposed method is compared with the traditional model predictive rotor current control (MPRCC) method, and the effectiveness of the proposed method is verified on a 1.5 kW DFIG experimental platform.
期刊介绍:
IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal.
Specific technology areas covered by the journal include:
Wind power technology and systems
Photovoltaics
Solar thermal power generation
Geothermal energy
Fuel cells
Wave power
Marine current energy
Biomass conversion and power generation
What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small.
The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged.
The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced.
Current Special Issue. Call for papers:
Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf
Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf