Complex-Valued Suprametric Spaces, Related Fixed Point Results, and Their Applications to Barnsley Fern Fractal Generation and Mixed Volterra–Fredholm Integral Equations

S. K. Panda, V. Vijayakumar, Ravi P. Agarwal
{"title":"Complex-Valued Suprametric Spaces, Related Fixed Point Results, and Their Applications to Barnsley Fern Fractal Generation and Mixed Volterra–Fredholm Integral Equations","authors":"S. K. Panda, V. Vijayakumar, Ravi P. Agarwal","doi":"10.3390/fractalfract8070410","DOIUrl":null,"url":null,"abstract":"The novelty of this work is that it is the first to introduce complex-valued suprametric spaces and apply it to Fractal Generation and mixed Volterra–Fredholm Integral Equations. In the realm of fuzzy logic, complex-valued suprametric spaces provide a robust framework for quantifying the similarity between fuzzy sets; for instance, utilizing a complex-valued suprametric approach, we compared the similarity between fuzzy sets represented by complex-valued feature vectors, yielding quantitative measures of their relationships. Thereafter, we establish related fixed point results and their applications in algorithmic and numerical contexts. The study then delves into the generation of fractals, exemplified by the Barnsley Fern fractal, utilizing sequences of affine transformations within complex-valued suprametric spaces. Moreover, this article presents two algorithms for soft computing and fractal generation. The first algorithm uses complex-valued suprametric similarity for fuzzy clustering, iteratively assigning fuzzy sets to clusters based on similarity and updating cluster centers until convergence. The distinctive pattern of the Barnsley Fern fractal is produced by the second algorithm’s repetitive affine transformations, which are chosen at random. These techniques demonstrate how well complex numbers cluster and how simple procedures can create complicated fractals. Moving beyond fractal generation, the paper addresses the solution of mixed Volterra–Fredholm integral equations in the complex plane using our results, demonstrating numerical illustrations of complex-valued integral equations.","PeriodicalId":510138,"journal":{"name":"Fractal and Fractional","volume":"58 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract8070410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The novelty of this work is that it is the first to introduce complex-valued suprametric spaces and apply it to Fractal Generation and mixed Volterra–Fredholm Integral Equations. In the realm of fuzzy logic, complex-valued suprametric spaces provide a robust framework for quantifying the similarity between fuzzy sets; for instance, utilizing a complex-valued suprametric approach, we compared the similarity between fuzzy sets represented by complex-valued feature vectors, yielding quantitative measures of their relationships. Thereafter, we establish related fixed point results and their applications in algorithmic and numerical contexts. The study then delves into the generation of fractals, exemplified by the Barnsley Fern fractal, utilizing sequences of affine transformations within complex-valued suprametric spaces. Moreover, this article presents two algorithms for soft computing and fractal generation. The first algorithm uses complex-valued suprametric similarity for fuzzy clustering, iteratively assigning fuzzy sets to clusters based on similarity and updating cluster centers until convergence. The distinctive pattern of the Barnsley Fern fractal is produced by the second algorithm’s repetitive affine transformations, which are chosen at random. These techniques demonstrate how well complex numbers cluster and how simple procedures can create complicated fractals. Moving beyond fractal generation, the paper addresses the solution of mixed Volterra–Fredholm integral equations in the complex plane using our results, demonstrating numerical illustrations of complex-valued integral equations.
复值超对称空间、相关定点结果及其在巴恩斯利蕨分形生成和混合 Volterra-Fredholm 积分方程中的应用
这项工作的新颖之处在于它首次引入了复值超对称空间,并将其应用于分形生成和混合 Volterra-Fredholm 积分方程。在模糊逻辑领域,复值超度量空间为量化模糊集之间的相似性提供了一个稳健的框架;例如,我们利用复值超度量方法,比较了由复值特征向量表示的模糊集之间的相似性,得出了它们之间关系的量化度量。之后,我们建立了相关的定点结果及其在算法和数值方面的应用。然后,研究深入探讨了分形的生成,以巴恩斯利-费恩分形为例,利用了复值超对称空间内的仿射变换序列。此外,本文还介绍了两种软计算和分形生成算法。第一种算法利用复值超对称相似性进行模糊聚类,根据相似性迭代地将模糊集合分配到聚类中,并更新聚类中心直至收敛。Barnsley Fern 分形的独特图案是由第二种算法随机选择的重复仿射变换产生的。这些技术展示了复杂数字的聚类效果,以及简单的程序如何产生复杂的分形。除了分形生成之外,论文还利用我们的研究成果探讨了复平面内 Volterra-Fredholm 混合积分方程的解法,展示了复值积分方程的数值图解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信