Jun Wu, Shuo Huang, Shaobo Yuan, Long Jin, Runxia Guo, Jiusheng Chen
{"title":"Three-dimensional contour detection method based on fusion of machine vision and laser radar","authors":"Jun Wu, Shuo Huang, Shaobo Yuan, Long Jin, Runxia Guo, Jiusheng Chen","doi":"10.1088/1361-6501/ad6282","DOIUrl":null,"url":null,"abstract":"\n In the current methods of point cloud processing, there are still several limitations, particularly in achieving high precision and accuracy for large objects in complex environments. Existing techniques often struggle with incomplete or noisy data, leading to inaccurate contour extraction. In view of the challenges associated with the sparse and discrete nature of point clouds in complex environments, which lead to poor accuracy and stability in object contour extraction, this paper proposes a novel method for accurately extracting the contours of three-dimensional target point clouds. The method integrates high-resolution images with sparse point cloud information to address these issues. Firstly, the local characteristics of the point cloud are calculated, allowing for the selection of a contour point cloud. Next, depth information from two-dimensional images is obtained through a fuzzy mapping relationship. Finally, constraint conditions are established to derive a more accurate predicted value of the contour point cloud. Experiments demonstrate that the proposed method effectively improves the precision and accuracy of contour extraction for large objects, reducing measurement deviation by approximately 64.9% compared to using the original point cloud alone. Additionally, the method shows a more accurate completion effect on parts of the contour that are missing, underscoring its robustness and effectiveness in challenging scenarios.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"23 5","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad6282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In the current methods of point cloud processing, there are still several limitations, particularly in achieving high precision and accuracy for large objects in complex environments. Existing techniques often struggle with incomplete or noisy data, leading to inaccurate contour extraction. In view of the challenges associated with the sparse and discrete nature of point clouds in complex environments, which lead to poor accuracy and stability in object contour extraction, this paper proposes a novel method for accurately extracting the contours of three-dimensional target point clouds. The method integrates high-resolution images with sparse point cloud information to address these issues. Firstly, the local characteristics of the point cloud are calculated, allowing for the selection of a contour point cloud. Next, depth information from two-dimensional images is obtained through a fuzzy mapping relationship. Finally, constraint conditions are established to derive a more accurate predicted value of the contour point cloud. Experiments demonstrate that the proposed method effectively improves the precision and accuracy of contour extraction for large objects, reducing measurement deviation by approximately 64.9% compared to using the original point cloud alone. Additionally, the method shows a more accurate completion effect on parts of the contour that are missing, underscoring its robustness and effectiveness in challenging scenarios.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.