I. Crișan, Andrea Bunea, D. Vârban, M. Cordea, Vasile Horga, C. Vinatoru, A. Stoie, R. Vârban
{"title":"Variation in the Photosynthetic Leaf Pigments of Different Basil (Ocimum spp.) Genotypes under Varying Conditions at the Flowering Stage","authors":"I. Crișan, Andrea Bunea, D. Vârban, M. Cordea, Vasile Horga, C. Vinatoru, A. Stoie, R. Vârban","doi":"10.3390/horticulturae10070740","DOIUrl":null,"url":null,"abstract":"Basil is a culinary herb in high demand all year round, either fresh, dried, or frozen. Field basil crops are commercially predominant, while greenhouse crops can cover the demand for fresh basil during the off-season. The leaf aspect of basil has great importance for the food industry, and a great diversity of genotypes has been created. The aim of this research was to conduct a comparative characterization of 12 basil genotypes (green and purple leaf) that present interest for breeding programs from a national germplasm collection. The study examines the accumulation of photosynthetic pigments in basil cultivated in field versus greenhouse conditions as indicators of plant performance and herb quality from the perspective of ensuring fresh plant material all year round. The experimental median indicated that photosynthetic leaf pigments accumulated in higher concentrations in the field relative to the greenhouse conditions, in descending order: β-carotene, lutein, chlorophyll a, and chlorophyll b. The trend was not as consistent for chlorophyll b, since four out of twelve genotypes presented higher levels in the greenhouse than in the field, while the overall values were not much lower in the greenhouse than the field (16.82%). All genotypes accumulated much higher carotenoid contents in field conditions relative to greenhouse conditions (>200%) and could also provide better nutritional advantages given their demonstrated health benefits. The differences in photosynthetic leaf pigments have both nutritional (the carotenoids), shelf-life, and processing relevance (chlorophylls) and serve as quality markers.","PeriodicalId":507445,"journal":{"name":"Horticulturae","volume":"69 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulturae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/horticulturae10070740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Basil is a culinary herb in high demand all year round, either fresh, dried, or frozen. Field basil crops are commercially predominant, while greenhouse crops can cover the demand for fresh basil during the off-season. The leaf aspect of basil has great importance for the food industry, and a great diversity of genotypes has been created. The aim of this research was to conduct a comparative characterization of 12 basil genotypes (green and purple leaf) that present interest for breeding programs from a national germplasm collection. The study examines the accumulation of photosynthetic pigments in basil cultivated in field versus greenhouse conditions as indicators of plant performance and herb quality from the perspective of ensuring fresh plant material all year round. The experimental median indicated that photosynthetic leaf pigments accumulated in higher concentrations in the field relative to the greenhouse conditions, in descending order: β-carotene, lutein, chlorophyll a, and chlorophyll b. The trend was not as consistent for chlorophyll b, since four out of twelve genotypes presented higher levels in the greenhouse than in the field, while the overall values were not much lower in the greenhouse than the field (16.82%). All genotypes accumulated much higher carotenoid contents in field conditions relative to greenhouse conditions (>200%) and could also provide better nutritional advantages given their demonstrated health benefits. The differences in photosynthetic leaf pigments have both nutritional (the carotenoids), shelf-life, and processing relevance (chlorophylls) and serve as quality markers.