{"title":"Enhancing the catalytic performance of Cu/ZnO/Al2O3 catalyst in methanol synthesis from biomass-derived syngas with CeO2, MnO2 and ZrO2 as promoters","authors":"Sabar Pangihutan Simanungkalit, Chiemeka Onyeka Okoye, Zhezi Zhang, Junzhi Wu, Dongke Zhang","doi":"10.1002/apj.3121","DOIUrl":null,"url":null,"abstract":"<p>The performance of Cu/ZnO/Al<sub>2</sub>O<sub>3</sub> (CZA) catalysts promoted by addition of CeO<sub>2</sub>, MnO<sub>2</sub> or ZrO<sub>2</sub> in direct methanol production from unconventional syngas was experimentally investigated. The unconventional syngas used in this study contain 25% H<sub>2</sub>, 25% CO, 20% CH<sub>4</sub>, 20% CO<sub>2</sub> and 10% N<sub>2</sub>, representing biomass-derived syngas cultivated from an industrial wood chips pyrolysis plant. The catalysts were synthesised using co-precipitation technique and tested for methanol synthesis in a fixed-bed reactor. The activity test of the catalysts showed that the addition of CeO<sub>2</sub> or ZrO<sub>2</sub> to the CZA catalyst improved the methanol yield, albeit with lower selectivity, whereas adding MnO<sub>2</sub> enhanced methanol selectivity but decreased the methanol yield. ZrO<sub>2</sub>-promoted catalyst showed the best-improved activity and stability. The calcined and spent catalysts were characterised using X-ray diffraction (XRD), N<sub>2</sub> physisorption, N<sub>2</sub>O chemisorption, hydrogen temperature-programmed reduction (H<sub>2</sub>-TPR) and X-ray photoelectron spectroscopy (XPS). The characterisation results indicate that the catalytic activity is dependent on Cu dispersion, Cu-active surface area, the catalyst reducibility, Brunauer–Emmett–Teller (BET) surface area and the Cu<sup>0</sup>/Cu<sup>+</sup> ratio. In contrast, catalyst stability was related to the proportion of Cu<sup>+</sup> among all surface Cu species.</p>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":"19 5","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apj.3121","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apj.3121","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The performance of Cu/ZnO/Al2O3 (CZA) catalysts promoted by addition of CeO2, MnO2 or ZrO2 in direct methanol production from unconventional syngas was experimentally investigated. The unconventional syngas used in this study contain 25% H2, 25% CO, 20% CH4, 20% CO2 and 10% N2, representing biomass-derived syngas cultivated from an industrial wood chips pyrolysis plant. The catalysts were synthesised using co-precipitation technique and tested for methanol synthesis in a fixed-bed reactor. The activity test of the catalysts showed that the addition of CeO2 or ZrO2 to the CZA catalyst improved the methanol yield, albeit with lower selectivity, whereas adding MnO2 enhanced methanol selectivity but decreased the methanol yield. ZrO2-promoted catalyst showed the best-improved activity and stability. The calcined and spent catalysts were characterised using X-ray diffraction (XRD), N2 physisorption, N2O chemisorption, hydrogen temperature-programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS). The characterisation results indicate that the catalytic activity is dependent on Cu dispersion, Cu-active surface area, the catalyst reducibility, Brunauer–Emmett–Teller (BET) surface area and the Cu0/Cu+ ratio. In contrast, catalyst stability was related to the proportion of Cu+ among all surface Cu species.
期刊介绍:
Asia-Pacific Journal of Chemical Engineering is aimed at capturing current developments and initiatives in chemical engineering related and specialised areas. Publishing six issues each year, the journal showcases innovative technological developments, providing an opportunity for technology transfer and collaboration.
Asia-Pacific Journal of Chemical Engineering will focus particular attention on the key areas of: Process Application (separation, polymer, catalysis, nanotechnology, electrochemistry, nuclear technology); Energy and Environmental Technology (materials for energy storage and conversion, coal gasification, gas liquefaction, air pollution control, water treatment, waste utilization and management, nuclear waste remediation); and Biochemical Engineering (including targeted drug delivery applications).