{"title":"Unravelling the Optoelectronic and Biological Properties of Phenanthroimidazo [1,2‐c] Quinazoline‐Based Donor‐Acceptor Materials","authors":"Prabhu Ganesan , Revathi Ranganathan , Rajadurai Vijay Solomon , Peer Muhamed Noorani , Paramaguru Ganesan , Nooruddin Thajuddin , Anbazhagan Venkattappan , Renganathan Rajalingam , Peng Gao","doi":"10.1002/ajoc.202400285","DOIUrl":null,"url":null,"abstract":"<div><div>Imidazo[1,2‐c]quinazoline, a class of fused imidazole and quinazoline acceptor units, is widely established as biologically and broadly spectral active materials, while their optoelectronic properties were seldom investigated in the literature. In this context, this research work introduced two donors of varying strength, such as triphenylamine (TP) and phenothiazine (PZ) units, into the phenanthroimidazo [1,2‐c] quinazoline acceptor unit to form donor‐acceptor type luminescence materials such as TPQZ and PZQZ, respectively and were characterized by NMR and mass spectroscopy. Both these materials exhibited intramolecular charge transfer (ICT) type absorption (∼380–450 nm) and emission (∼540–600 nm) characteristics, which attributed to the electronic transition occurring from the HOMO of the TP/PZ donor to the LUMO+1 and LUMO+2 of the imidazo [1,2‐c] quinazoline acceptor unit, as predicted using DFT calculations. Increasing the electron donor strength was not only limited to fine‐tuning the π→π* based localized (∼400–450 nm) to ICT (∼450–650 nm) emission characteristics in both the solution and solid‐state conditions but also found to improve the zone of inhibition to 16 mm against <em>Staphylococcus aureus</em>/<em>Bacillus subtilis</em> bacterial species. The scope of realizing the luminescence nature of this acceptor unit is further expanded towards tagging biological samples such as E. coli. Overall, this work opens up a new paradigm in developing luminescent materials utilizing imidazo[1,2‐c]quinazoline acceptor unit for optoelectronic and biological applications.</div></div>","PeriodicalId":130,"journal":{"name":"Asian Journal of Organic Chemistry","volume":"13 10","pages":"Article e202400285"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2193580724003258","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Imidazo[1,2‐c]quinazoline, a class of fused imidazole and quinazoline acceptor units, is widely established as biologically and broadly spectral active materials, while their optoelectronic properties were seldom investigated in the literature. In this context, this research work introduced two donors of varying strength, such as triphenylamine (TP) and phenothiazine (PZ) units, into the phenanthroimidazo [1,2‐c] quinazoline acceptor unit to form donor‐acceptor type luminescence materials such as TPQZ and PZQZ, respectively and were characterized by NMR and mass spectroscopy. Both these materials exhibited intramolecular charge transfer (ICT) type absorption (∼380–450 nm) and emission (∼540–600 nm) characteristics, which attributed to the electronic transition occurring from the HOMO of the TP/PZ donor to the LUMO+1 and LUMO+2 of the imidazo [1,2‐c] quinazoline acceptor unit, as predicted using DFT calculations. Increasing the electron donor strength was not only limited to fine‐tuning the π→π* based localized (∼400–450 nm) to ICT (∼450–650 nm) emission characteristics in both the solution and solid‐state conditions but also found to improve the zone of inhibition to 16 mm against Staphylococcus aureus/Bacillus subtilis bacterial species. The scope of realizing the luminescence nature of this acceptor unit is further expanded towards tagging biological samples such as E. coli. Overall, this work opens up a new paradigm in developing luminescent materials utilizing imidazo[1,2‐c]quinazoline acceptor unit for optoelectronic and biological applications.
期刊介绍:
Organic chemistry is the fundamental science that stands at the heart of chemistry, biology, and materials science. Research in these areas is vigorous and truly international, with three major regions making almost equal contributions: America, Europe and Asia. Asia now has its own top international organic chemistry journal—the Asian Journal of Organic Chemistry (AsianJOC)
The AsianJOC is designed to be a top-ranked international research journal and publishes primary research as well as critical secondary information from authors across the world. The journal covers organic chemistry in its entirety. Authors and readers come from academia, the chemical industry, and government laboratories.