Fractional operators with homogeneous kernel on the Calderón product of Morrey spaces

Pub Date : 2024-07-15 DOI:10.1002/mana.202400043
Daniel Salim, Moch. Taufik Hakiki, Yoshihiro Sawano, Denny Ivanal Hakim, Muhamad Jamaludin
{"title":"Fractional operators with homogeneous kernel on the Calderón product of Morrey spaces","authors":"Daniel Salim,&nbsp;Moch. Taufik Hakiki,&nbsp;Yoshihiro Sawano,&nbsp;Denny Ivanal Hakim,&nbsp;Muhamad Jamaludin","doi":"10.1002/mana.202400043","DOIUrl":null,"url":null,"abstract":"<p>We investigate fractional operators with homogeneous kernel in Morrey spaces. In particular, we prove that fractional integral operators and fractional maximal operators with homogeneous kernel are bounded from the Calderón product of Morrey spaces to certain Morrey spaces. Our results can be seen as a generalization of a recent result on the relation between the boundedness of (classical) fractional operators and interpolation of Morrey spaces. What is new about this paper is not only the passage from the classical fractional integral operators to the rough integral operators. Even the case of fractional integral operators, handled in earlier papers, is significantly simplified.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate fractional operators with homogeneous kernel in Morrey spaces. In particular, we prove that fractional integral operators and fractional maximal operators with homogeneous kernel are bounded from the Calderón product of Morrey spaces to certain Morrey spaces. Our results can be seen as a generalization of a recent result on the relation between the boundedness of (classical) fractional operators and interpolation of Morrey spaces. What is new about this paper is not only the passage from the classical fractional integral operators to the rough integral operators. Even the case of fractional integral operators, handled in earlier papers, is significantly simplified.

分享
查看原文
莫雷空间卡尔德龙积上具有同质核的分数算子
我们研究了莫雷空间中具有同质核的分数算子。特别是,我们证明了具有同质核的分数积分算子和分数最大算子从 Morrey 空间的卡尔德隆积到某些 Morrey 空间是有界的。我们的结果可以看作是对最近关于(经典)分数算子有界性与莫雷空间插值之间关系的一个结果的概括。本文的新颖之处不仅在于从经典分数积分算子到粗糙积分算子。甚至连以前论文中处理过的分数积分算子的情况也大大简化了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信