Jesús Sánchez-Dávila, M. De Cáceres, J. Vayreda, Javier Retana
{"title":"Regional patterns and drivers of modelled water flows along environmental, functional, and stand structure gradients in Spanish forests","authors":"Jesús Sánchez-Dávila, M. De Cáceres, J. Vayreda, Javier Retana","doi":"10.5194/hess-28-3037-2024","DOIUrl":null,"url":null,"abstract":"Abstract. The study of the water cycle in the forest at large scales, such as countries, is challenging due to the difficulty of correctly estimating forest water flows. Hydrological models can be coupled with extensive forest data sources, such as national forest inventories, to estimate the water flow of forests over large extents, but so far the studies conducted have not analysed the role of stand structure variables or the functional traits of the forest on predicted blue and green water flows in detail. In this study, we modelled the water balance of Spanish forests using stand structure and species data from forest inventories to understand the effects of climate, stand structure, and functional groups on blue water flows. We calculated blue water and green water flows and expressed them relative to received precipitation. Relative blue water flow was mainly concentrated in the wetter regions (Atlantic and alpine biomes) of Spain (around 25 %) in comparison with the Mediterranean biomes (10 %–20 %) and during the autumn–winter season. The leaf area index (LAI) of the forest stand is the most important predictor of relative blue water, exhibiting a negative effect until it reaches a plateau at higher levels (around 2.5–3). Deciduous forests showed a greater relative blue water flow than evergreen functional groups (25 %–35 % and 10 %–25 %, respectively) primarily due to leaf fall during the autumn–winter season. This study highlights how green water is decoupled from blue water; namely, blue water depends on winter and autumn precipitation, while green water depends on the spring and summer water demand and how the species' functional traits (deciduous vs. evergreen) can influence blue water production.\n","PeriodicalId":13143,"journal":{"name":"Hydrology and Earth System Sciences","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology and Earth System Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/hess-28-3037-2024","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. The study of the water cycle in the forest at large scales, such as countries, is challenging due to the difficulty of correctly estimating forest water flows. Hydrological models can be coupled with extensive forest data sources, such as national forest inventories, to estimate the water flow of forests over large extents, but so far the studies conducted have not analysed the role of stand structure variables or the functional traits of the forest on predicted blue and green water flows in detail. In this study, we modelled the water balance of Spanish forests using stand structure and species data from forest inventories to understand the effects of climate, stand structure, and functional groups on blue water flows. We calculated blue water and green water flows and expressed them relative to received precipitation. Relative blue water flow was mainly concentrated in the wetter regions (Atlantic and alpine biomes) of Spain (around 25 %) in comparison with the Mediterranean biomes (10 %–20 %) and during the autumn–winter season. The leaf area index (LAI) of the forest stand is the most important predictor of relative blue water, exhibiting a negative effect until it reaches a plateau at higher levels (around 2.5–3). Deciduous forests showed a greater relative blue water flow than evergreen functional groups (25 %–35 % and 10 %–25 %, respectively) primarily due to leaf fall during the autumn–winter season. This study highlights how green water is decoupled from blue water; namely, blue water depends on winter and autumn precipitation, while green water depends on the spring and summer water demand and how the species' functional traits (deciduous vs. evergreen) can influence blue water production.
期刊介绍:
Hydrology and Earth System Sciences (HESS) is a not-for-profit international two-stage open-access journal for the publication of original research in hydrology. HESS encourages and supports fundamental and applied research that advances the understanding of hydrological systems, their role in providing water for ecosystems and society, and the role of the water cycle in the functioning of the Earth system. A multi-disciplinary approach is encouraged that broadens the hydrological perspective and the advancement of hydrological science through integration with other cognate sciences and cross-fertilization across disciplinary boundaries.