{"title":"High-order accurate multi-sub-step implicit integration algorithms with dissipation control for hyperbolic problems","authors":"Jinze Li, Hua Li, Kaiping Yu, Rui Zhao","doi":"10.1007/s00419-024-02637-y","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes an implicit family of sub-step integration algorithms grounded in the explicit singly diagonally implicit Runge–Kutta (ESDIRK) method. The proposed methods achieve third-order consistency per sub-step, and thus, the trapezoidal rule is always employed in the first sub-step. This paper demonstrates for the first time that the proposed <i>s</i>-sub-step implicit method with <span>\\( s\\le 6 \\)</span> can reach <i>s</i>th-order accuracy when achieving dissipation control and unconditional stability simultaneously. Hence, this paper develops, analyzes, and compares four cost-optimal high-order implicit algorithms within the present <i>s</i>-sub-step method using three, four, five, and six sub-steps. Each high-order implicit algorithm shares identical effective stiffness matrices to achieve optimal spectral properties. Unlike the published algorithms, the proposed high-order methods do not suffer from the order reduction for solving forced vibrations. Moreover, the novel methods overcome the defect that the authors’ previous algorithms require an additional solution to obtain accurate accelerations. Linear and nonlinear examples are solved to confirm the numerical performance and superiority of four novel high-order algorithms.</p></div>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":"94 8","pages":"2285 - 2334"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00419-024-02637-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes an implicit family of sub-step integration algorithms grounded in the explicit singly diagonally implicit Runge–Kutta (ESDIRK) method. The proposed methods achieve third-order consistency per sub-step, and thus, the trapezoidal rule is always employed in the first sub-step. This paper demonstrates for the first time that the proposed s-sub-step implicit method with \( s\le 6 \) can reach sth-order accuracy when achieving dissipation control and unconditional stability simultaneously. Hence, this paper develops, analyzes, and compares four cost-optimal high-order implicit algorithms within the present s-sub-step method using three, four, five, and six sub-steps. Each high-order implicit algorithm shares identical effective stiffness matrices to achieve optimal spectral properties. Unlike the published algorithms, the proposed high-order methods do not suffer from the order reduction for solving forced vibrations. Moreover, the novel methods overcome the defect that the authors’ previous algorithms require an additional solution to obtain accurate accelerations. Linear and nonlinear examples are solved to confirm the numerical performance and superiority of four novel high-order algorithms.
期刊介绍:
Archive of Applied Mechanics serves as a platform to communicate original research of scholarly value in all branches of theoretical and applied mechanics, i.e., in solid and fluid mechanics, dynamics and vibrations. It focuses on continuum mechanics in general, structural mechanics, biomechanics, micro- and nano-mechanics as well as hydrodynamics. In particular, the following topics are emphasised: thermodynamics of materials, material modeling, multi-physics, mechanical properties of materials, homogenisation, phase transitions, fracture and damage mechanics, vibration, wave propagation experimental mechanics as well as machine learning techniques in the context of applied mechanics.