Maryam Nazari, Edward Cieplechowicz, Gregory C. Welch
{"title":"Air processed, high open-circuit voltage indoor organic photovoltaic cells based on side chain modified N-annulated perylene diimides","authors":"Maryam Nazari, Edward Cieplechowicz, Gregory C. Welch","doi":"10.1002/cjce.25402","DOIUrl":null,"url":null,"abstract":"<p>To achieve high-performance indoor organic photovoltaics (OPVs), it is important to match the photoactive layer optical absorption with the light-source emission. This can be accomplished by developing organic photoactive materials that can efficiently absorb visible light and thus minimize energy losses. While indoor OPVs have achieved efficiencies above 33% under low light intensities, the power output is limited by low open circuit voltages (<i>V</i><sub>OC</sub>), often well below 1 V. In this study, we present a series of visible-light absorbing (energy gap >1.90 eV) non-fullerene acceptors (NFAs) based on perylene diimide dimers, which have been systematically modified with side chains of varying polarity and steric bulk (trimethyl benzyl, ethyl adamantane, trialkoxyl phenyl, and oligo ethylene glycol). Our results show that the incorporation of sterically bulky side chains such as ethyl adamantane and trimethyl benzyl, blended with the common widegap polymer PTQ10, provides photoactive layers with absorption greater than 2.0 eV, and consequently, <i>V</i><sub>OC</sub>s higher than 1.2 V are achieved under AM 1.5 G illumination. Importantly, we found that the NFA with ethyl adamantane based side chains (tPDI<sub>2</sub>N-ethyl adamantane, compound 4) exhibited the best performance, with minimized energy loss. As a result, devices using PTQ10:tPDI<sub>2</sub>N-ethyl adamantane photoactive layers demonstrated excellent indoor efficiencies of over 16% and 18 μW cm<sup>−2</sup> power output under a 2700 K LED lamp at 300 lux, and showed better repeatability compared to other systems. The PTQ10:tPDI<sub>2</sub>N-ethyl adamantane based devices maintained a high <i>V</i><sub>OC</sub> (>1.0 V) across a wide range of indoor lighting conditions, including 2700 K and 6500 K LED lamps. Overall, this work provides a sidechain engineering method to create NFAs for efficient indoor OPV devices.</p>","PeriodicalId":9400,"journal":{"name":"Canadian Journal of Chemical Engineering","volume":"102 12","pages":"4120-4128"},"PeriodicalIF":1.6000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjce.25402","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjce.25402","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To achieve high-performance indoor organic photovoltaics (OPVs), it is important to match the photoactive layer optical absorption with the light-source emission. This can be accomplished by developing organic photoactive materials that can efficiently absorb visible light and thus minimize energy losses. While indoor OPVs have achieved efficiencies above 33% under low light intensities, the power output is limited by low open circuit voltages (VOC), often well below 1 V. In this study, we present a series of visible-light absorbing (energy gap >1.90 eV) non-fullerene acceptors (NFAs) based on perylene diimide dimers, which have been systematically modified with side chains of varying polarity and steric bulk (trimethyl benzyl, ethyl adamantane, trialkoxyl phenyl, and oligo ethylene glycol). Our results show that the incorporation of sterically bulky side chains such as ethyl adamantane and trimethyl benzyl, blended with the common widegap polymer PTQ10, provides photoactive layers with absorption greater than 2.0 eV, and consequently, VOCs higher than 1.2 V are achieved under AM 1.5 G illumination. Importantly, we found that the NFA with ethyl adamantane based side chains (tPDI2N-ethyl adamantane, compound 4) exhibited the best performance, with minimized energy loss. As a result, devices using PTQ10:tPDI2N-ethyl adamantane photoactive layers demonstrated excellent indoor efficiencies of over 16% and 18 μW cm−2 power output under a 2700 K LED lamp at 300 lux, and showed better repeatability compared to other systems. The PTQ10:tPDI2N-ethyl adamantane based devices maintained a high VOC (>1.0 V) across a wide range of indoor lighting conditions, including 2700 K and 6500 K LED lamps. Overall, this work provides a sidechain engineering method to create NFAs for efficient indoor OPV devices.
期刊介绍:
The Canadian Journal of Chemical Engineering (CJChE) publishes original research articles, new theoretical interpretation or experimental findings and critical reviews in the science or industrial practice of chemical and biochemical processes. Preference is given to papers having a clearly indicated scope and applicability in any of the following areas: Fluid mechanics, heat and mass transfer, multiphase flows, separations processes, thermodynamics, process systems engineering, reactors and reaction kinetics, catalysis, interfacial phenomena, electrochemical phenomena, bioengineering, minerals processing and natural products and environmental and energy engineering. Papers that merely describe or present a conventional or routine analysis of existing processes will not be considered.