Elsevar Mikayilov, Nizami Zeynalov, D. Taghiyev, Shamil Taghiyev
{"title":"Role of Computational Modeling in the Design and Development of Nanotechnology-based Drug Delivery Systems","authors":"Elsevar Mikayilov, Nizami Zeynalov, D. Taghiyev, Shamil Taghiyev","doi":"10.15255/cabeq.2024.2290","DOIUrl":null,"url":null,"abstract":"Nanoparticle formulation development for drug delivery, a crucial aspect of nano-technology, encounters numerous challenges. These encompass selecting appropriate excipients, comprehending miscibility and solubility factors, ensuring efficient drug encapsulation and release, assessing stability, and facilitating drug transport in the bloodstream for accurate targeting and attachment. To address these intricate issues, a range of molecular computational models is utilized. These models include quantum mechanical simulations that handle the smallest particles and move through atomistic molecular dynamics for detailed molecular interactions, coarse-grained molecular dynamics (MD) for larger scale phenomena, and dissipative particle dynamics (DPD) for mesoscale modeling. Further scaling up, computational fluid dynamics (CFD) is used for fluidic behaviors, discrete element modeling for large particle systems, and both pharmacokinetic/pharmaco-dynamic (PK/PD) and physiologically based pharmacokinetic (PBPK) modeling for whole-body dynamics. These methodologies play a crucial role in elucidating the complex mechanisms involved in the development of nanoparticle formulations and are essential in the creation of varied organic and inorganic systems for drug delivery. This review primarily concentrates on these computational simulation models and their significance in the context of nanoparticle-based drug delivery systems.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.15255/cabeq.2024.2290","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanoparticle formulation development for drug delivery, a crucial aspect of nano-technology, encounters numerous challenges. These encompass selecting appropriate excipients, comprehending miscibility and solubility factors, ensuring efficient drug encapsulation and release, assessing stability, and facilitating drug transport in the bloodstream for accurate targeting and attachment. To address these intricate issues, a range of molecular computational models is utilized. These models include quantum mechanical simulations that handle the smallest particles and move through atomistic molecular dynamics for detailed molecular interactions, coarse-grained molecular dynamics (MD) for larger scale phenomena, and dissipative particle dynamics (DPD) for mesoscale modeling. Further scaling up, computational fluid dynamics (CFD) is used for fluidic behaviors, discrete element modeling for large particle systems, and both pharmacokinetic/pharmaco-dynamic (PK/PD) and physiologically based pharmacokinetic (PBPK) modeling for whole-body dynamics. These methodologies play a crucial role in elucidating the complex mechanisms involved in the development of nanoparticle formulations and are essential in the creation of varied organic and inorganic systems for drug delivery. This review primarily concentrates on these computational simulation models and their significance in the context of nanoparticle-based drug delivery systems.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.