Christoph Herbert, Patricia de Rosnay, Peter Weston, D. Fairbairn
{"title":"Towards unified land data assimilation at ECMWF: Soil and snow temperature analysis in the SEKF","authors":"Christoph Herbert, Patricia de Rosnay, Peter Weston, D. Fairbairn","doi":"10.1002/qj.4808","DOIUrl":null,"url":null,"abstract":"Weather centres use a variety of data assimilation schemes to analyze different land variables in their operational forecast systems. Current activities at the European Centre for Medium‐Range Weather Forecasts (ECMWF) are working towards a unified and more consistent land data assimilation system to provide more accurate initial conditions for the atmospheric forecasts. The first step is to replace the current 1D optimal interpolation (1D‐OI) used for first‐layer soil and snow temperature analyses, and integrate multi‐layer soil and first‐layer snow temperature into the ensemble‐based simplified extended Kalman filter (SEKF) currently used for multi‐layer soil moisture. This work focuses on the technical developments and the evaluation of the atmospheric forecast skill of a series of numerical weather prediction experiments to compare different SEKF configurations with the former 1D‐OI over a three‐month summer and winter period. Using the SEKF leads to seasonally varying significant improvements in the 2‐m temperature forecast in the verification against own analyses and to slightly improved results in the validation using independent synoptic observations. This work lays the foundation for integrating additional land variables into the SEKF and investigating stronger land–atmosphere coupling.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"17 21","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4808","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Weather centres use a variety of data assimilation schemes to analyze different land variables in their operational forecast systems. Current activities at the European Centre for Medium‐Range Weather Forecasts (ECMWF) are working towards a unified and more consistent land data assimilation system to provide more accurate initial conditions for the atmospheric forecasts. The first step is to replace the current 1D optimal interpolation (1D‐OI) used for first‐layer soil and snow temperature analyses, and integrate multi‐layer soil and first‐layer snow temperature into the ensemble‐based simplified extended Kalman filter (SEKF) currently used for multi‐layer soil moisture. This work focuses on the technical developments and the evaluation of the atmospheric forecast skill of a series of numerical weather prediction experiments to compare different SEKF configurations with the former 1D‐OI over a three‐month summer and winter period. Using the SEKF leads to seasonally varying significant improvements in the 2‐m temperature forecast in the verification against own analyses and to slightly improved results in the validation using independent synoptic observations. This work lays the foundation for integrating additional land variables into the SEKF and investigating stronger land–atmosphere coupling.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico