{"title":"Investigation of Metal Powder Blending for PBF-LB/M Using Particle Tracing with Ti-6Al-4V","authors":"Ina Ludwig, Anatol Gerassimenko, Phillip Imgrund","doi":"10.3390/jmmp8040151","DOIUrl":null,"url":null,"abstract":"Laser-based powder bed fusion of metals (PBF-LB/M) is the most used additive manufacturing (AM) technology for metal parts. Nevertheless, challenges persist in effectively managing metal powder, particularly in blending methodologies in the choice of blenders as well as in the verification of blend results. In this study, a bespoke laboratory-scale AM blender is developed, tailored to address these challenges, prioritizing low-impact blending to mitigate powder degradation. As a blending type, a V-shape tumbling geometry meeting the requirements for laboratory AM usage is chosen based on a literature assessment. The implementation of thermal oxidation as a powder marking technique enables particle tracing. Blending validation is achieved using light microscopy for area measurement based on binary image processing. The powder size and shape remain unaffected after marking and blending. Only a small narrowing of the particle size distribution is detected after 180 min of blending. The V-shape tumbling blender efficiently yields a completely random state in under 10 min for rotational speeds of 20, 40, and 60 rounds per minute. In conclusion, this research underscores the critical role of blender selection in AM and advocates for continued exploration to refine powder blending practices, with the aim of advancing the capabilities and competitiveness of AM technologies.","PeriodicalId":16319,"journal":{"name":"Journal of Manufacturing and Materials Processing","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing and Materials Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jmmp8040151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Laser-based powder bed fusion of metals (PBF-LB/M) is the most used additive manufacturing (AM) technology for metal parts. Nevertheless, challenges persist in effectively managing metal powder, particularly in blending methodologies in the choice of blenders as well as in the verification of blend results. In this study, a bespoke laboratory-scale AM blender is developed, tailored to address these challenges, prioritizing low-impact blending to mitigate powder degradation. As a blending type, a V-shape tumbling geometry meeting the requirements for laboratory AM usage is chosen based on a literature assessment. The implementation of thermal oxidation as a powder marking technique enables particle tracing. Blending validation is achieved using light microscopy for area measurement based on binary image processing. The powder size and shape remain unaffected after marking and blending. Only a small narrowing of the particle size distribution is detected after 180 min of blending. The V-shape tumbling blender efficiently yields a completely random state in under 10 min for rotational speeds of 20, 40, and 60 rounds per minute. In conclusion, this research underscores the critical role of blender selection in AM and advocates for continued exploration to refine powder blending practices, with the aim of advancing the capabilities and competitiveness of AM technologies.