{"title":"Fluidized bed applications and modern scale-up tools for the energy transition","authors":"Todd Pugsley","doi":"10.1002/cjce.25420","DOIUrl":null,"url":null,"abstract":"<p>Fluidized bed technology has a 100-year history of delivering energy solutions to the world. Examples include fluid catalytic cracking, coal combustion and gasification, and fluid coking. Moving forward, fluidization technology has the potential to underpin the development of entirely new sustainable processes in the energy transition and the circular economy and many of these will be advanced by small-and-medium enterprises (SMEs) and start-ups. Focused, low-cost, and time-bound research outcomes will be needed to support these SMEs as they bring their new technologies to market as quickly as possible. This paper first summarizes some of the fluidized bed technologies that will play a key role in the energy transition and then considers how the strategic concept of discovery driven growth can lead to focused, rapid, and low-cost information. The experimental data can then be used to develop hybrid models using machine learning methods that will be more robust, accurate, and reliable models. With focused, interdisciplinary research, fluidization models may be developed that would allow fluidized beds to go directly from lab or pilot scale directly to commercial. This would reduce development costs and timelines dramatically, hence bringing these new technologies to market more quickly. Early commercialization will allow the environmental benefits to begin to accrue earlier and will improve returns on investment.</p>","PeriodicalId":9400,"journal":{"name":"Canadian Journal of Chemical Engineering","volume":"103 4","pages":"1494-1501"},"PeriodicalIF":1.6000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjce.25420","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fluidized bed technology has a 100-year history of delivering energy solutions to the world. Examples include fluid catalytic cracking, coal combustion and gasification, and fluid coking. Moving forward, fluidization technology has the potential to underpin the development of entirely new sustainable processes in the energy transition and the circular economy and many of these will be advanced by small-and-medium enterprises (SMEs) and start-ups. Focused, low-cost, and time-bound research outcomes will be needed to support these SMEs as they bring their new technologies to market as quickly as possible. This paper first summarizes some of the fluidized bed technologies that will play a key role in the energy transition and then considers how the strategic concept of discovery driven growth can lead to focused, rapid, and low-cost information. The experimental data can then be used to develop hybrid models using machine learning methods that will be more robust, accurate, and reliable models. With focused, interdisciplinary research, fluidization models may be developed that would allow fluidized beds to go directly from lab or pilot scale directly to commercial. This would reduce development costs and timelines dramatically, hence bringing these new technologies to market more quickly. Early commercialization will allow the environmental benefits to begin to accrue earlier and will improve returns on investment.
期刊介绍:
The Canadian Journal of Chemical Engineering (CJChE) publishes original research articles, new theoretical interpretation or experimental findings and critical reviews in the science or industrial practice of chemical and biochemical processes. Preference is given to papers having a clearly indicated scope and applicability in any of the following areas: Fluid mechanics, heat and mass transfer, multiphase flows, separations processes, thermodynamics, process systems engineering, reactors and reaction kinetics, catalysis, interfacial phenomena, electrochemical phenomena, bioengineering, minerals processing and natural products and environmental and energy engineering. Papers that merely describe or present a conventional or routine analysis of existing processes will not be considered.