Synthesis and evaluation of salt tolerant delayed-crosslinking fracturing fluid system in ultra-deep high temperature wells

IF 2.2 4区 化学 Q3 CHEMISTRY, PHYSICAL
Cheng Jian, Yi Yu, Dingze Yu, Ping Chen, Jing Yan, Xuefeng Chen
{"title":"Synthesis and evaluation of salt tolerant delayed-crosslinking fracturing fluid system in ultra-deep high temperature wells","authors":"Cheng Jian,&nbsp;Yi Yu,&nbsp;Dingze Yu,&nbsp;Ping Chen,&nbsp;Jing Yan,&nbsp;Xuefeng Chen","doi":"10.1007/s00396-024-05296-1","DOIUrl":null,"url":null,"abstract":"<div><p>The Tarim area, characterized by deep reservoirs, high temperatures, and limited fresh water resources, necessitates a fracturing fluid system that exhibits excellent temperature shear resistance, low friction, and salinity tolerance. This study presents the development of a zwitterionic hydrophobic polymer, HPC-5, as an effective thickener using five types of polymeric monomers, including AM, AA, DMC, AMPS, and a non-ionic hydrophobic monomer. The method employed for synthesis was free-radical polymerization in solution. A series of experiments including viscosity measurement with variation of salinity, solubility and drag reduction test, crosslinking test, thermal and shear resistance, sand-carrying test, gel breaking evaluation, and core damage test were conduct under the simulated reservoir conditions. The zwitterionic design imparts great salt tolerance to HPC-5, and the apparent viscosities of HPC-5 solutions can maintain comparably high values with 10×10<sup>4</sup> ppm NaCl and CaCl<sub>2</sub> concentration. Meanwhile, the molecules of HPC-5 associate with each other to form tight net structures, resulting in an excellent viscoelasticity of the solution. To achieve high pump rate during hydraulic fracturing operation in ultra-deep reservoirs, the delayed crosslinking agent ZDC-L was prepared for forming a delayed crosslinking gel fracturing fluid system using reservoir brine, and the drag reduction rate can reach over 70% before crossing link within 4 min. Under pH = 4 conditions, the crosslinking time can be significantly delayed to over 4 min while maintaining exceptional temperature resistance up to 160 ℃ for the gel. These properties make it highly suitable for hydraulic fracturing operations in ultra-deep wells with temperatures reaching up to 7000 m depth at pump rates of 4~5m<sup>3</sup>/min.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"302 10","pages":"1591 - 1601"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00396-024-05296-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Tarim area, characterized by deep reservoirs, high temperatures, and limited fresh water resources, necessitates a fracturing fluid system that exhibits excellent temperature shear resistance, low friction, and salinity tolerance. This study presents the development of a zwitterionic hydrophobic polymer, HPC-5, as an effective thickener using five types of polymeric monomers, including AM, AA, DMC, AMPS, and a non-ionic hydrophobic monomer. The method employed for synthesis was free-radical polymerization in solution. A series of experiments including viscosity measurement with variation of salinity, solubility and drag reduction test, crosslinking test, thermal and shear resistance, sand-carrying test, gel breaking evaluation, and core damage test were conduct under the simulated reservoir conditions. The zwitterionic design imparts great salt tolerance to HPC-5, and the apparent viscosities of HPC-5 solutions can maintain comparably high values with 10×104 ppm NaCl and CaCl2 concentration. Meanwhile, the molecules of HPC-5 associate with each other to form tight net structures, resulting in an excellent viscoelasticity of the solution. To achieve high pump rate during hydraulic fracturing operation in ultra-deep reservoirs, the delayed crosslinking agent ZDC-L was prepared for forming a delayed crosslinking gel fracturing fluid system using reservoir brine, and the drag reduction rate can reach over 70% before crossing link within 4 min. Under pH = 4 conditions, the crosslinking time can be significantly delayed to over 4 min while maintaining exceptional temperature resistance up to 160 ℃ for the gel. These properties make it highly suitable for hydraulic fracturing operations in ultra-deep wells with temperatures reaching up to 7000 m depth at pump rates of 4~5m3/min.

Graphical abstract

Abstract Image

Abstract Image

超深高温井中耐盐延迟交联压裂液体系的合成与评估
塔里木地区储层深、温度高、淡水资源有限,因此需要一种具有出色的耐温剪切性、低摩擦性和耐盐性的压裂液体系。本研究利用五种聚合物单体(包括 AM、AA、DMC、AMPS 和一种非离子疏水单体),开发了一种有效的增稠剂--齐聚物疏水聚合物 HPC-5。合成方法是在溶液中进行自由基聚合。在模拟储层条件下进行了一系列试验,包括随盐度变化的粘度测量、溶解度和阻力降低试验、交联试验、耐热性和耐剪切性、携砂试验、凝胶破裂评估和岩心损害试验。HPC-5的齐聚物设计赋予其极强的耐盐性,在10×104 ppm的NaCl和CaCl2浓度下,HPC-5溶液的表观粘度仍能保持相当高的数值。同时,HPC-5 分子之间相互结合形成紧密的网状结构,从而使溶液具有极佳的粘弹性。为了在超深储层水力压裂作业中实现高泵率,制备了延迟交联剂 ZDC-L,利用储层盐水形成延迟交联凝胶压裂液体系,在 4 分钟内,交联前的阻力降低率可达 70% 以上。在 pH = 4 的条件下,交联时间可显著延迟至 4 分钟以上,同时凝胶还能保持优异的耐温性,最高可达 160 ℃。这些特性使其非常适合在温度高达 7000 米、泵速为 4~5m3/min 的超深井中进行水力压裂作业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Colloid and Polymer Science
Colloid and Polymer Science 化学-高分子科学
CiteScore
4.60
自引率
4.20%
发文量
111
审稿时长
2.2 months
期刊介绍: Colloid and Polymer Science - a leading international journal of longstanding tradition - is devoted to colloid and polymer science and its interdisciplinary interactions. As such, it responds to a demand which has lost none of its actuality as revealed in the trends of contemporary materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信