Annual progress in global carbon capture, utilization, and storage in 2023

IF 3.5 3区 工程技术 Q3 ENERGY & FUELS
Siyuan Fang, Yun Hang Hu
{"title":"Annual progress in global carbon capture, utilization, and storage in 2023","authors":"Siyuan Fang,&nbsp;Yun Hang Hu","doi":"10.1002/ese3.1846","DOIUrl":null,"url":null,"abstract":"<p>Since the industrial revolution, global anthropogenic CO<sub>2</sub> emissions have surged dramatically to unsustainable levels, resulting in severe issues, such as global warming, extreme weather events, and species extinction. In response to this critical situation, extensive efforts have been undertaken across academia, industry, and policymaking sectors to deploy carbon capture, utilization, and storage (CCUS) technologies. Here, we present the annual summary of global CCUS for the year 2023. We begin by discussing the trends of anthropogenic CO<sub>2</sub> emissions and atmospheric CO<sub>2</sub> concentrations, and then offer an up-to-date summary of progress in academia, industry, and policy, respectively. In academia, we analyze the number and categories of publications and highlight some key breakthroughs. In the industry sector, we meticulously collect and present information on operational commercial carbon-capture and storage facilities. Furthermore, we elucidate significant policy announcements and reforms across diverse regions. This concise and comprehensive annual report aims to inspire ongoing efforts and collaboration among academia, industry, and policymakers toward advancing carbon neutrality.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.1846","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.1846","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Since the industrial revolution, global anthropogenic CO2 emissions have surged dramatically to unsustainable levels, resulting in severe issues, such as global warming, extreme weather events, and species extinction. In response to this critical situation, extensive efforts have been undertaken across academia, industry, and policymaking sectors to deploy carbon capture, utilization, and storage (CCUS) technologies. Here, we present the annual summary of global CCUS for the year 2023. We begin by discussing the trends of anthropogenic CO2 emissions and atmospheric CO2 concentrations, and then offer an up-to-date summary of progress in academia, industry, and policy, respectively. In academia, we analyze the number and categories of publications and highlight some key breakthroughs. In the industry sector, we meticulously collect and present information on operational commercial carbon-capture and storage facilities. Furthermore, we elucidate significant policy announcements and reforms across diverse regions. This concise and comprehensive annual report aims to inspire ongoing efforts and collaboration among academia, industry, and policymakers toward advancing carbon neutrality.

Abstract Image

2023 年全球碳捕集、利用与封存的年度进展情况
自工业革命以来,全球人为二氧化碳排放量急剧增加,已达到不可持续的水平,导致全球变暖、极端天气事件和物种灭绝等严重问题。为了应对这一严峻形势,学术界、工业界和决策部门都在广泛努力部署碳捕集、利用和封存(CCUS)技术。在此,我们将介绍 2023 年全球 CCUS 的年度总结。我们首先讨论了人为二氧化碳排放和大气二氧化碳浓度的趋势,然后分别对学术界、工业界和政策制定部门的最新进展进行了总结。在学术界,我们分析了出版物的数量和类别,并强调了一些关键突破。在工业领域,我们仔细收集并介绍了商业碳捕集与封存设施的运行信息。此外,我们还阐明了不同地区的重大政策公告和改革。这份简明而全面的年度报告旨在激励学术界、产业界和政策制定者为推进碳中和而不断努力和合作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Science & Engineering
Energy Science & Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
6.80
自引率
7.90%
发文量
298
审稿时长
11 weeks
期刊介绍: Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信