{"title":"High-accuracy and lightweight weld surface defect detector based on graph convolution decoupling head","authors":"Guanqiang Wang, Ming-Song Chen, Y.C. Lin, Xianhua Tan, Chizhou Zhang, Kai Li, Bai-Hui Gao, Yu-Xin Kang, Weiwei Zhao","doi":"10.1088/1361-6501/ad63c2","DOIUrl":null,"url":null,"abstract":"\n The essence of the difficulties for weld surface detection is that there is a lot of interference information during detection. This study aims to enhance the detection accuracy while keeping great deployment capabilities of a detection model for weld surface defects. To achieve this goal, an improved Yolo-GCH model is proposed based on the stable and fast Yolo-v5. The improvements primarily involve introducing a graph convolution network combined with a self-attention mechanism in the head part (i.e., GCH). This component focuses on improving the insufficient recognition capability of CNN for similar defects in complex environments. Furthermore, to address the presence of potentially ambiguous samples in complex welding environments, the label assignment strategy of simOTA is implemented to optimize the anchor frame. Additionally, a streamlined structure, aiming to improve model detection speed while minimizing performance impact, has been designed to enhance the applicability of the model. The results demonstrate that the cooperation of GCH and simOTA significantly improves the detection performance while maintaining the inference speed. These strategies lead to a 2.5% increase in mAP@0.5 and reduce the missing detection rates of weld and 8 types of defects by 32.9% and 84.1% respectively, surpassing other weld surface detection models. Furthermore, the impressive applicability of the model is verified across four scaled versions of Yolo-v5. Based on the proposed strategies, the FPS increases by more than 30 frames in the fast s and n versions of Yolo-v5. These results demonstrate the great potential of the model for industrial applications.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"1 3","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad63c2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The essence of the difficulties for weld surface detection is that there is a lot of interference information during detection. This study aims to enhance the detection accuracy while keeping great deployment capabilities of a detection model for weld surface defects. To achieve this goal, an improved Yolo-GCH model is proposed based on the stable and fast Yolo-v5. The improvements primarily involve introducing a graph convolution network combined with a self-attention mechanism in the head part (i.e., GCH). This component focuses on improving the insufficient recognition capability of CNN for similar defects in complex environments. Furthermore, to address the presence of potentially ambiguous samples in complex welding environments, the label assignment strategy of simOTA is implemented to optimize the anchor frame. Additionally, a streamlined structure, aiming to improve model detection speed while minimizing performance impact, has been designed to enhance the applicability of the model. The results demonstrate that the cooperation of GCH and simOTA significantly improves the detection performance while maintaining the inference speed. These strategies lead to a 2.5% increase in mAP@0.5 and reduce the missing detection rates of weld and 8 types of defects by 32.9% and 84.1% respectively, surpassing other weld surface detection models. Furthermore, the impressive applicability of the model is verified across four scaled versions of Yolo-v5. Based on the proposed strategies, the FPS increases by more than 30 frames in the fast s and n versions of Yolo-v5. These results demonstrate the great potential of the model for industrial applications.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.