The Modeled Seasonal Cycles of Surface N2O Fluxes and Atmospheric N2O

IF 5.4 2区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Qing Sun, Fortunat Joos, Sebastian Lienert, Sarah Berthet, Dustin Carroll, Cheng Gong, Akihiko Ito, Atul K. Jain, Sian Kou-Giesbrecht, Angela Landolfi, Manfredi Manizza, Naiqing Pan, Michael Prather, Pierre Regnier, Laure Resplandy, Roland Séférian, Hao Shi, Parvadha Suntharalingam, Rona L. Thompson, Hanqin Tian, Nicolas Vuichard, Sönke Zaehle, Qing Zhu
{"title":"The Modeled Seasonal Cycles of Surface N2O Fluxes and Atmospheric N2O","authors":"Qing Sun,&nbsp;Fortunat Joos,&nbsp;Sebastian Lienert,&nbsp;Sarah Berthet,&nbsp;Dustin Carroll,&nbsp;Cheng Gong,&nbsp;Akihiko Ito,&nbsp;Atul K. Jain,&nbsp;Sian Kou-Giesbrecht,&nbsp;Angela Landolfi,&nbsp;Manfredi Manizza,&nbsp;Naiqing Pan,&nbsp;Michael Prather,&nbsp;Pierre Regnier,&nbsp;Laure Resplandy,&nbsp;Roland Séférian,&nbsp;Hao Shi,&nbsp;Parvadha Suntharalingam,&nbsp;Rona L. Thompson,&nbsp;Hanqin Tian,&nbsp;Nicolas Vuichard,&nbsp;Sönke Zaehle,&nbsp;Qing Zhu","doi":"10.1029/2023GB008010","DOIUrl":null,"url":null,"abstract":"<p>Nitrous oxide (N<sub>2</sub>O) is a greenhouse gas and stratospheric ozone-depleting substance with large and growing anthropogenic emissions. Previous studies identified the influx of N<sub>2</sub>O-depleted air from the stratosphere to partly cause the seasonality in tropospheric N<sub>2</sub>O (aN<sub>2</sub>O), but other contributions remain unclear. Here, we combine surface fluxes from eight land and four ocean models from phase 2 of the Nitrogen/N<sub>2</sub>O Model Intercomparison Project with tropospheric transport modeling to simulate aN<sub>2</sub>O at eight remote air sampling sites for modern and pre-industrial periods. Models show general agreement on the seasonal phasing of zonal-average N<sub>2</sub>O fluxes for most sites, but seasonal peak-to-peak amplitudes differ several-fold across models. The modeled seasonal amplitude of surface aN<sub>2</sub>O ranges from 0.25 to 0.80 ppb (interquartile ranges 21%–52% of median) for land, 0.14–0.25 ppb (17%–68%) for ocean, and 0.28–0.77 ppb (23%–52%) for combined flux contributions. The observed seasonal amplitude ranges from 0.34 to 1.08 ppb for these sites. The stratospheric contributions to aN<sub>2</sub>O, inferred by the difference between the surface-troposphere model and observations, show 16%–126% larger amplitudes and minima delayed by ∼1 month compared to Northern Hemisphere site observations. Land fluxes and their seasonal amplitude have increased since the pre-industrial era and are projected to grow further under anthropogenic activities. Our results demonstrate the increasing importance of land fluxes for aN<sub>2</sub>O seasonality. Considering the large model spread, in situ aN<sub>2</sub>O observations and atmospheric transport-chemistry models will provide opportunities for constraining terrestrial and oceanic biosphere models, critical for projecting carbon-nitrogen cycles under ongoing global warming.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 7","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB008010","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023GB008010","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Nitrous oxide (N2O) is a greenhouse gas and stratospheric ozone-depleting substance with large and growing anthropogenic emissions. Previous studies identified the influx of N2O-depleted air from the stratosphere to partly cause the seasonality in tropospheric N2O (aN2O), but other contributions remain unclear. Here, we combine surface fluxes from eight land and four ocean models from phase 2 of the Nitrogen/N2O Model Intercomparison Project with tropospheric transport modeling to simulate aN2O at eight remote air sampling sites for modern and pre-industrial periods. Models show general agreement on the seasonal phasing of zonal-average N2O fluxes for most sites, but seasonal peak-to-peak amplitudes differ several-fold across models. The modeled seasonal amplitude of surface aN2O ranges from 0.25 to 0.80 ppb (interquartile ranges 21%–52% of median) for land, 0.14–0.25 ppb (17%–68%) for ocean, and 0.28–0.77 ppb (23%–52%) for combined flux contributions. The observed seasonal amplitude ranges from 0.34 to 1.08 ppb for these sites. The stratospheric contributions to aN2O, inferred by the difference between the surface-troposphere model and observations, show 16%–126% larger amplitudes and minima delayed by ∼1 month compared to Northern Hemisphere site observations. Land fluxes and their seasonal amplitude have increased since the pre-industrial era and are projected to grow further under anthropogenic activities. Our results demonstrate the increasing importance of land fluxes for aN2O seasonality. Considering the large model spread, in situ aN2O observations and atmospheric transport-chemistry models will provide opportunities for constraining terrestrial and oceanic biosphere models, critical for projecting carbon-nitrogen cycles under ongoing global warming.

Abstract Image

地表一氧化二氮通量和大气一氧化二氮的季节循环模型
一氧化二氮(N2O)是一种温室气体和平流层臭氧消耗物质,其人为排放量巨大且不断增加。以前的研究发现,平流层中贫化的一氧化二氮空气的流入是造成对流层一氧化二氮(aN2O)季节性变化的部分原因,但其他原因尚不清楚。在这里,我们将氮/一氧化二氮模型相互比较项目第二阶段的八个陆地模型和四个海洋模型的地表通量与对流层传输模型相结合,模拟了现代和前工业化时期八个偏远空气采样点的一氧化二氮。模型显示,大多数站点的带状平均一氧化二氮通量的季节分期基本一致,但不同模型的季节峰-峰振幅相差数倍。地表 aN2O 的模型季节振幅范围为:陆地 0.25 至 0.80 ppb(中位数的 21%-52%),海洋 0.14 至 0.25 ppb(17%-68%),综合通量贡献 0.28 至 0.77 ppb(23%-52%)。这些站点观测到的季节振幅范围为 0.34 至 1.08 ppb。通过地表-对流层模式与观测数据之间的差异推断出的平流层对 aN2O 的贡献显示,与北半球站点的观测数据相比,振幅大 16%-126%,最小值延迟了 1 个月。自前工业化时代以来,陆地通量及其季节振幅一直在增加,预计在人为活动的影响下还会进一步增加。我们的研究结果表明,陆地通量对一氧化二氮季节性的影响越来越重要。考虑到模型的巨大差异,现场一氧化二氮观测和大气传输-化学模型将为约束陆地和海洋生物圈模型提供机会,这对于预测全球持续变暖下的碳氮循环至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Biogeochemical Cycles
Global Biogeochemical Cycles 环境科学-地球科学综合
CiteScore
8.90
自引率
7.70%
发文量
141
审稿时长
8-16 weeks
期刊介绍: Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信