A review of design, materials, and manufacturing techniques in bumper beam system

IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES
{"title":"A review of design, materials, and manufacturing techniques in bumper beam system","authors":"","doi":"10.1016/j.jcomc.2024.100496","DOIUrl":null,"url":null,"abstract":"<div><p>The bumper beam assembly absorbs the kinetic energy and encounters deformation during low and high-velocity impact crash collisions and accidents. An optimal bumper energy-absorbing system should fulfill pedestrian safety requirements and be crashworthy in both high- and low-speed collisions. Bumper beams made of traditional metallic materials, especially from high-strength steel, are heavyweight under low production capacity. The lightweight structure of the assembly can be achieved by using composite materials to replace the metals addressing the weight issues. In this review article, literature related to bumper beam materials is studied along with applications and the best possible and optimum option to be considered as a replacement for metals. Different parameters which affect the design of the bumper beam assembly are also reviewed. The design of bumper beams has been studied based on the conceptual design and their importance in the early stage of manufacturing. The paper also discussed the comparison of different manufacturing processes used to fabricate bumper beam assembly. Moreover, literature related to experimental investigations is also studied and reviewed with respect to the numerical models of bumper beams based on different parameters. Based on the comparison, it is concluded that numerical models can be effectively used in the design of a high-performance bumper beam system.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666682024000653/pdfft?md5=df67b0da3ae3bcf9a3ba1d4c503aaf3e&pid=1-s2.0-S2666682024000653-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682024000653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

The bumper beam assembly absorbs the kinetic energy and encounters deformation during low and high-velocity impact crash collisions and accidents. An optimal bumper energy-absorbing system should fulfill pedestrian safety requirements and be crashworthy in both high- and low-speed collisions. Bumper beams made of traditional metallic materials, especially from high-strength steel, are heavyweight under low production capacity. The lightweight structure of the assembly can be achieved by using composite materials to replace the metals addressing the weight issues. In this review article, literature related to bumper beam materials is studied along with applications and the best possible and optimum option to be considered as a replacement for metals. Different parameters which affect the design of the bumper beam assembly are also reviewed. The design of bumper beams has been studied based on the conceptual design and their importance in the early stage of manufacturing. The paper also discussed the comparison of different manufacturing processes used to fabricate bumper beam assembly. Moreover, literature related to experimental investigations is also studied and reviewed with respect to the numerical models of bumper beams based on different parameters. Based on the comparison, it is concluded that numerical models can be effectively used in the design of a high-performance bumper beam system.

保险杠横梁系统的设计、材料和制造技术综述
保险杠横梁总成可吸收动能,并在低速和高速撞击碰撞和事故中发生变形。最佳的保险杠吸能系统应满足行人安全要求,并在高速和低速碰撞中都具有耐撞性。由传统金属材料(尤其是高强度钢)制成的保险杠横梁重量大,产能低。通过使用复合材料替代金属,可以实现总成结构的轻量化,从而解决重量问题。在这篇综述文章中,研究了与保险杠横梁材料相关的文献,以及其应用和作为金属替代品的最佳选择。此外,还对影响保险杠横梁组件设计的不同参数进行了综述。根据概念设计及其在制造早期阶段的重要性,对保险杠横梁的设计进行了研究。论文还讨论了用于制造保险杠横梁组件的不同制造工艺的比较。此外,还研究和审查了与实验研究有关的文献,以及基于不同参数的保险杠横梁数值模型。根据比较得出结论,数值模型可有效用于高性能保险杠横梁系统的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Part C Open Access
Composites Part C Open Access Engineering-Mechanical Engineering
CiteScore
8.60
自引率
2.40%
发文量
96
审稿时长
55 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信