{"title":"ECG signal fusion reconstruction via hash autoencoder and margin semantic reinforcement","authors":"Yixian Fang , Canwei Wang , Yuwei Ren , Fangzhou Xu","doi":"10.1016/j.jksuci.2024.102124","DOIUrl":null,"url":null,"abstract":"<div><p>The ECG signal is often accompanied by noise, which can affect its shape characteristics, so it is important to perform signal de-noising. However, the commonly used signal noise reduction methods, such as wavelet or filter transformation, often prioritize high-frequency signals over low-frequency ones, leading to the loss of low-frequency band features or difficulties in capturing them. We propose a fusion reconstruction framework that combines hash autoencoder and margin semantic reinforcement to enhance low-frequency band features. Specifically, for labeled samples, margin semantic reinforcement identifies and corrects weight discrepancies among bands with similar waveforms but different labels to amplify the low-frequency signals associated with the label and reduce irrelevant ones. Meanwhile, hash autoencoder utilizes a semantic hash dictionary to reconstruct the original signal and mitigate noise pollution. For unlabeled samples, the hash autoencoder is utilized to generate pseudo-labels, followed by the reproduction of the aforementioned enhanced reconstruction process. The final step involves weighting the two types of signals, enhanced with margin semantics and hash autoencoder reconstruction, to achieve the reconstruction objective of the original signal, facilitating recognition and detection tasks. Experiments conducted on different classical classifiers demonstrate that the reconstructed ECG signals can significantly improve their performance.</p></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 6","pages":"Article 102124"},"PeriodicalIF":5.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319157824002131/pdfft?md5=cb705ac9ed204e1395389a7ec4365e45&pid=1-s2.0-S1319157824002131-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319157824002131","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The ECG signal is often accompanied by noise, which can affect its shape characteristics, so it is important to perform signal de-noising. However, the commonly used signal noise reduction methods, such as wavelet or filter transformation, often prioritize high-frequency signals over low-frequency ones, leading to the loss of low-frequency band features or difficulties in capturing them. We propose a fusion reconstruction framework that combines hash autoencoder and margin semantic reinforcement to enhance low-frequency band features. Specifically, for labeled samples, margin semantic reinforcement identifies and corrects weight discrepancies among bands with similar waveforms but different labels to amplify the low-frequency signals associated with the label and reduce irrelevant ones. Meanwhile, hash autoencoder utilizes a semantic hash dictionary to reconstruct the original signal and mitigate noise pollution. For unlabeled samples, the hash autoencoder is utilized to generate pseudo-labels, followed by the reproduction of the aforementioned enhanced reconstruction process. The final step involves weighting the two types of signals, enhanced with margin semantics and hash autoencoder reconstruction, to achieve the reconstruction objective of the original signal, facilitating recognition and detection tasks. Experiments conducted on different classical classifiers demonstrate that the reconstructed ECG signals can significantly improve their performance.
期刊介绍:
In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.