A Q-Learning based NSGA-II for dynamic flexible job shop scheduling with limited transportation resources

IF 8.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
{"title":"A Q-Learning based NSGA-II for dynamic flexible job shop scheduling with limited transportation resources","authors":"","doi":"10.1016/j.swevo.2024.101658","DOIUrl":null,"url":null,"abstract":"<div><p>With the widespread adoption of intelligent transportation equipment such as AGVs in the manufacturing field, the flexible job shop scheduling considering limited transportation resources has increasingly attracted attention. However, current research does not consider various dynamic disturbances in real production scenarios, resulting in lower executability of scheduling solutions. To solve this problem, a dynamic flexible job shop scheduling model with limited transportation resources is established, aiming to minimize makespan and total energy consumption. Considering three types of disturbances: job cancellation, machine breakdown, and AGV breakdown, the corresponding event-driven rescheduling strategy is proposed, and a rescheduling instability index is designed to measure the performance of the rescheduling strategy. A <span><math><mi>Q</mi></math></span>-Learning-based NSGA-II algorithm (QNSGA-II) is proposed. By learning the feedback historical search experience, it adaptively selects the appropriate neighborhood structures for local search; and a hybrid initialization strategy tailored to the problem characteristics is designed to improve the optimization performance of the algorithm. Through simulation experiments, the effectiveness of the rescheduling strategies and the superiority of the QNSGA-II algorithm in solving such problems are validated.</p></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224001962","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

With the widespread adoption of intelligent transportation equipment such as AGVs in the manufacturing field, the flexible job shop scheduling considering limited transportation resources has increasingly attracted attention. However, current research does not consider various dynamic disturbances in real production scenarios, resulting in lower executability of scheduling solutions. To solve this problem, a dynamic flexible job shop scheduling model with limited transportation resources is established, aiming to minimize makespan and total energy consumption. Considering three types of disturbances: job cancellation, machine breakdown, and AGV breakdown, the corresponding event-driven rescheduling strategy is proposed, and a rescheduling instability index is designed to measure the performance of the rescheduling strategy. A Q-Learning-based NSGA-II algorithm (QNSGA-II) is proposed. By learning the feedback historical search experience, it adaptively selects the appropriate neighborhood structures for local search; and a hybrid initialization strategy tailored to the problem characteristics is designed to improve the optimization performance of the algorithm. Through simulation experiments, the effectiveness of the rescheduling strategies and the superiority of the QNSGA-II algorithm in solving such problems are validated.

基于 Q-Learning 的 NSGA-II,适用于运输资源有限的动态灵活作业车间调度
随着 AGV 等智能运输设备在制造领域的广泛应用,考虑有限运输资源的柔性作业车间调度越来越受到关注。然而,目前的研究并未考虑实际生产场景中的各种动态干扰,导致调度方案的可执行性较低。为解决这一问题,本文建立了一个考虑有限运输资源的动态柔性作业车间调度模型,旨在最小化生产周期和总能耗。考虑到作业取消、机器故障和 AGV 故障三种干扰类型,提出了相应的事件驱动重调度策略,并设计了重调度不稳定性指数来衡量重调度策略的性能。提出了基于 Q 学习的 NSGA-II 算法(QNSGA-II)。该算法通过学习反馈的历史搜索经验,自适应地选择适当的邻域结构进行局部搜索;并根据问题的特点设计了一种混合初始化策略,以提高算法的优化性能。通过仿真实验,验证了重新安排策略的有效性以及 QNSGA-II 算法在解决此类问题时的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Swarm and Evolutionary Computation
Swarm and Evolutionary Computation COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
16.00
自引率
12.00%
发文量
169
期刊介绍: Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信