Tobias Wesselborg , Siiri Asumalahti , Sami Virolainen , Tuomo Sainio
{"title":"Design of a continuous ion exchange process in battery metals recycling: From single column experiments towards a simulated moving bed configuration","authors":"Tobias Wesselborg , Siiri Asumalahti , Sami Virolainen , Tuomo Sainio","doi":"10.1016/j.hydromet.2024.106361","DOIUrl":null,"url":null,"abstract":"<div><p>In hydrometallurgical recovery of LIB metals, ion exchange (IX) has hitherto played only a minor role. Separation experiments were conducted in single laboratory-scale IX columns with the aim of laying the foundation for a continuously operated multicolumn IX process similar to a simulated moving bed (SMB) configuration. In this study, the initial process developed earlier was improved by reducing the number of process steps and external streams. The desorption step with oxalate solution was examined in single-column batch experiments to ensure complete desorption of iron in the proposed continuous multicolumn IX process. Additionally, the volume flowrates were adjusted to achieve acceptable switch times of 25 min in an SMB configuration. It was found that the bead size of the resin is a critical factor in IX recovery of battery metals. The raffinate purity for the case of processing 2.5 BV lithium-ion battery waste leachate (LIBWL) improved from 97.2 % to 99.8 % when the resin bead size was reduced from 0.55 ± 0.05 mm to 0.4 ± 0.04 mm and a narrower bead size distribution. The LIBWL feed concentration was varied to mimic the dilution of fresh feed in an SMB set-up. The percentage recovery of Co and Ni decreased from 93.7 % and 96.6 % to 80.8 % and 89.4 %, respectively, when the LIBWL was diluted. This was a result of the decrease in concentration of impurity metals in the feed. Less impurity metals were sorbed and consequently, more ion exchange sites were available for the sorption of the target metals, which enhanced the retention of Co and Ni. The results were used to develop an IX column operation strategy and to suggest an initial SMB design. The multicolumn configuration presented in this work offers great potential for continuous production of high-purity Li, Ni and Co-containing raffinate (> 99.5 %).</p></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304386X24001014/pdfft?md5=c7b5a37071e50f17419103cef06821e2&pid=1-s2.0-S0304386X24001014-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrometallurgy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304386X24001014","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
In hydrometallurgical recovery of LIB metals, ion exchange (IX) has hitherto played only a minor role. Separation experiments were conducted in single laboratory-scale IX columns with the aim of laying the foundation for a continuously operated multicolumn IX process similar to a simulated moving bed (SMB) configuration. In this study, the initial process developed earlier was improved by reducing the number of process steps and external streams. The desorption step with oxalate solution was examined in single-column batch experiments to ensure complete desorption of iron in the proposed continuous multicolumn IX process. Additionally, the volume flowrates were adjusted to achieve acceptable switch times of 25 min in an SMB configuration. It was found that the bead size of the resin is a critical factor in IX recovery of battery metals. The raffinate purity for the case of processing 2.5 BV lithium-ion battery waste leachate (LIBWL) improved from 97.2 % to 99.8 % when the resin bead size was reduced from 0.55 ± 0.05 mm to 0.4 ± 0.04 mm and a narrower bead size distribution. The LIBWL feed concentration was varied to mimic the dilution of fresh feed in an SMB set-up. The percentage recovery of Co and Ni decreased from 93.7 % and 96.6 % to 80.8 % and 89.4 %, respectively, when the LIBWL was diluted. This was a result of the decrease in concentration of impurity metals in the feed. Less impurity metals were sorbed and consequently, more ion exchange sites were available for the sorption of the target metals, which enhanced the retention of Co and Ni. The results were used to develop an IX column operation strategy and to suggest an initial SMB design. The multicolumn configuration presented in this work offers great potential for continuous production of high-purity Li, Ni and Co-containing raffinate (> 99.5 %).
期刊介绍:
Hydrometallurgy aims to compile studies on novel processes, process design, chemistry, modelling, control, economics and interfaces between unit operations, and to provide a forum for discussions on case histories and operational difficulties.
Topics covered include: leaching of metal values by chemical reagents or bacterial action at ambient or elevated pressures and temperatures; separation of solids from leach liquors; removal of impurities and recovery of metal values by precipitation, ion exchange, solvent extraction, gaseous reduction, cementation, electro-winning and electro-refining; pre-treatment of ores by roasting or chemical treatments such as halogenation or reduction; recycling of reagents and treatment of effluents.