{"title":"Synergetic recycling of permanent magnet and Li-ion battery cathode material for metals recovery","authors":"","doi":"10.1016/j.susmat.2024.e01043","DOIUrl":null,"url":null,"abstract":"<div><p>Rare earth elements (REEs)-based (NdFeB) magnets and lithium−ion batteries (LIBs) are critical for a low−carbon economy. Their production depends on critical elements like REEs, Li, Co and Ni. Recycling of these products have been explored separately as a potential solution. Conventional methods for recycling NdFeB magnets and LIBs face challenges like high energy consumption, lengthy processing, excessive reagent usage, and waste generation. In this study, a novel synergetic recycling methodology is proposed to minimize these challenges. The idea is based on using waste ferrous sulfate solution generated during magnet leaching as a reducing and leaching reagent for battery recycling thereby eliminating the need for additional reagents for oxidation of iron in NdFeB and reduction of cathode material in LIBs. The magnet is leached in diluted H<sub>2</sub>SO<sub>4</sub> at 70 °C followed by double sulfate precipitation for REEs with Na<sub>2</sub>SO<sub>4</sub>. The REE-depleted but acidic ferrous solution is then used for reductive leaching of cathode material at 90 °C. The overall recovery rates of REEs, Li, Co, Ni, and Mn in this process are >95%. The iron from magnet material is recovered as crystalline and easily-filterable iron compound that can be converted to goethite and used as a byproduct. This synergetic approach not only reduces reagent consumption and waste generation aligning with the principles of circular economy but also offers improved efficiency, resource conservation, and environmental sustainability.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":null,"pages":null},"PeriodicalIF":8.6000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993724002239","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Rare earth elements (REEs)-based (NdFeB) magnets and lithium−ion batteries (LIBs) are critical for a low−carbon economy. Their production depends on critical elements like REEs, Li, Co and Ni. Recycling of these products have been explored separately as a potential solution. Conventional methods for recycling NdFeB magnets and LIBs face challenges like high energy consumption, lengthy processing, excessive reagent usage, and waste generation. In this study, a novel synergetic recycling methodology is proposed to minimize these challenges. The idea is based on using waste ferrous sulfate solution generated during magnet leaching as a reducing and leaching reagent for battery recycling thereby eliminating the need for additional reagents for oxidation of iron in NdFeB and reduction of cathode material in LIBs. The magnet is leached in diluted H2SO4 at 70 °C followed by double sulfate precipitation for REEs with Na2SO4. The REE-depleted but acidic ferrous solution is then used for reductive leaching of cathode material at 90 °C. The overall recovery rates of REEs, Li, Co, Ni, and Mn in this process are >95%. The iron from magnet material is recovered as crystalline and easily-filterable iron compound that can be converted to goethite and used as a byproduct. This synergetic approach not only reduces reagent consumption and waste generation aligning with the principles of circular economy but also offers improved efficiency, resource conservation, and environmental sustainability.
期刊介绍:
Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.