{"title":"Computational screening of multi-resonance thermally activated delayed fluorescence (MR-TADF) molecules for lasing application","authors":"Rongrong Li , Zhigang Shuai","doi":"10.1016/j.orgel.2024.107095","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-resonance thermally activated delayed fluorescence (MR-TADF) molecules charactering large emission oscillator strengths, effective reverse intersystem crossing (RISC), and narrow emission spectral width, have great potential as laser materials. We propose a molecular descriptor for quick screening MR-TADF molecules as laser candidate materials, <em>A =</em> <span><math><mrow><msub><mrow><mo>Δ</mo><mi>E</mi></mrow><mtext>ST</mtext></msub><msubsup><mi>σ</mi><mtext>eff</mtext><mrow><mtext>net</mtext><mo>,</mo><mtext>opt</mtext></mrow></msubsup></mrow></math></span>, namely, the product of singlet-triplet energy gap and the optical pumping net stimulated emission cross section. These quantities can be calculated by combining quantum chemistry package Gaussian and our own MOMAP program. Through extensive computations benchmarked with existing experiments, we suggest that <em>A</em> value should be larger than 0.311 ⨉ 10<sup>−17</sup> cm<sup>2</sup> eV for promising lasing molecules. We virtually designed 119 molecules with MR-TADF property, and based on our theoretical protocol by considering descriptor <em>A</em>, we are able to select 10 molecules as lasing molecules. We then further screen out 2 molecules through analyzing the spectral overlap, indicating that only eight molecules are prospective candidates for laser materials. Particularly, we find that ADBNA-Me-BPy molecule possesses large radiative decay rate and large reverse intersystem crossing rate, 1.90 × 10<sup>6</sup> s<sup>−1</sup> and 1.01 × 10<sup>8</sup> s<sup>−1</sup>, respectively, implying a low lasing threshold, promising for electrically pumped lasing.</p></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"132 ","pages":"Article 107095"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156611992400106X","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-resonance thermally activated delayed fluorescence (MR-TADF) molecules charactering large emission oscillator strengths, effective reverse intersystem crossing (RISC), and narrow emission spectral width, have great potential as laser materials. We propose a molecular descriptor for quick screening MR-TADF molecules as laser candidate materials, A = , namely, the product of singlet-triplet energy gap and the optical pumping net stimulated emission cross section. These quantities can be calculated by combining quantum chemistry package Gaussian and our own MOMAP program. Through extensive computations benchmarked with existing experiments, we suggest that A value should be larger than 0.311 ⨉ 10−17 cm2 eV for promising lasing molecules. We virtually designed 119 molecules with MR-TADF property, and based on our theoretical protocol by considering descriptor A, we are able to select 10 molecules as lasing molecules. We then further screen out 2 molecules through analyzing the spectral overlap, indicating that only eight molecules are prospective candidates for laser materials. Particularly, we find that ADBNA-Me-BPy molecule possesses large radiative decay rate and large reverse intersystem crossing rate, 1.90 × 106 s−1 and 1.01 × 108 s−1, respectively, implying a low lasing threshold, promising for electrically pumped lasing.
期刊介绍:
Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc.
Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.