Mohammad Sajad Mehranpour , Novin Rasooli , Hyoung Seop Kim , Terence G. Langdon , Hamed Shahmir
{"title":"Deformation-induced martensitic transformations: A strategy for overcoming the strength-ductility trade-off in high-entropy alloys","authors":"Mohammad Sajad Mehranpour , Novin Rasooli , Hyoung Seop Kim , Terence G. Langdon , Hamed Shahmir","doi":"10.1016/j.cossms.2024.101177","DOIUrl":null,"url":null,"abstract":"<div><p>High-entropy alloys (HEAs) have become an important topic in modern materials science due to their exceptional properties. Despite their attractive properties, achieving a superior strength-ductility synergy has been, and remains, a major challenge. In practice, overcoming the strength-ductility trade-off in HEAs is an overriding priority which may open the opportunity for the development of high-performance alloys. It is well-established that high-strength steels benefitted from metastability engineering by manipulating the deformation mechanisms to facilitate a deformation-induced martensitic transformation which provides acceptable ductility. Accordingly, and following this same approach, a metastable HEA was developed which exhibited a desirable combination of strength and ductility. This review is designed specifically to give a comprehensive description of the deformation mechanisms in these materials and to provide an overall perspective on the importance of material characteristics and processing variables. The discussion is centred for different HEAs on the significance of the transformation-induced plasticity in breaking the strength-ductility trade-off and thereafter to examine some challenges and research gaps which require future attention. The understanding of the HEAs achieved to date demonstrates that there is a large potential for the future enhancement and optimization of these alloys in developing high-performance materials for a wide range of applications.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"31 ","pages":"Article 101177"},"PeriodicalIF":12.2000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028624000433","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High-entropy alloys (HEAs) have become an important topic in modern materials science due to their exceptional properties. Despite their attractive properties, achieving a superior strength-ductility synergy has been, and remains, a major challenge. In practice, overcoming the strength-ductility trade-off in HEAs is an overriding priority which may open the opportunity for the development of high-performance alloys. It is well-established that high-strength steels benefitted from metastability engineering by manipulating the deformation mechanisms to facilitate a deformation-induced martensitic transformation which provides acceptable ductility. Accordingly, and following this same approach, a metastable HEA was developed which exhibited a desirable combination of strength and ductility. This review is designed specifically to give a comprehensive description of the deformation mechanisms in these materials and to provide an overall perspective on the importance of material characteristics and processing variables. The discussion is centred for different HEAs on the significance of the transformation-induced plasticity in breaking the strength-ductility trade-off and thereafter to examine some challenges and research gaps which require future attention. The understanding of the HEAs achieved to date demonstrates that there is a large potential for the future enhancement and optimization of these alloys in developing high-performance materials for a wide range of applications.
期刊介绍:
Title: Current Opinion in Solid State & Materials Science
Journal Overview:
Aims to provide a snapshot of the latest research and advances in materials science
Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science
Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields
Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research
Promotes cross-fertilization of ideas across an increasingly interdisciplinary field