A MaxEnt predictive model for palaeontological sites in the Siwalik Hills: A case study from the Pinjor Formation of the Upper Siwalik Hills near Chandigarh, northern India

Anubhav Preet Kaur , Matthew L. Sisk , Parth R. Chauhan
{"title":"A MaxEnt predictive model for palaeontological sites in the Siwalik Hills: A case study from the Pinjor Formation of the Upper Siwalik Hills near Chandigarh, northern India","authors":"Anubhav Preet Kaur ,&nbsp;Matthew L. Sisk ,&nbsp;Parth R. Chauhan","doi":"10.1016/j.qeh.2024.100017","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents application of the MaxEnt predictive model to identify potential palaeontological sites in the Siwalik Hills, focusing on the Pinjor Formation near Chandigarh, northern India. The Siwalik region holds rich vertebrate palaeontological records, yet lacks comprehensive site prediction models. This research employs MaxEnt (3.4.0) software, to predict areas suitable for fossil occurrences. Georeferenced presence data was derived from literature and field surveys, for training the model. Environmental predictors including Pinjor geological deposit boundary, Vegetation Index (NDVI), and Slope and Aspect were from a digital elevation model. Furthermore, model development involved parameter tuning, for developing a potentially useful model. Field validation of the model through pedestrian surveys identified new fossil localities, demonstrating the model's practical applicability. This research emphasizes the importance of MaxEnt in developing site predictive models, offering a valuable tool for optimizing palaeontological field surveys. While highlighting the model's success, the study also recognizes its limitations, especially concerning landscape and vegetation changes over time. Overall, this work establishes a foundation for further research in predictive modelling for palaeontological exploration in the Siwalik region and emphasizes the need for multidisciplinary efforts in salvage palaeontology to mitigate anthropogenic threats.</p></div>","PeriodicalId":101053,"journal":{"name":"Quaternary Environments and Humans","volume":"2 5","pages":"Article 100017"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S295023652400015X/pdfft?md5=84a2189366bfb9adb499432c7f50426f&pid=1-s2.0-S295023652400015X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quaternary Environments and Humans","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S295023652400015X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents application of the MaxEnt predictive model to identify potential palaeontological sites in the Siwalik Hills, focusing on the Pinjor Formation near Chandigarh, northern India. The Siwalik region holds rich vertebrate palaeontological records, yet lacks comprehensive site prediction models. This research employs MaxEnt (3.4.0) software, to predict areas suitable for fossil occurrences. Georeferenced presence data was derived from literature and field surveys, for training the model. Environmental predictors including Pinjor geological deposit boundary, Vegetation Index (NDVI), and Slope and Aspect were from a digital elevation model. Furthermore, model development involved parameter tuning, for developing a potentially useful model. Field validation of the model through pedestrian surveys identified new fossil localities, demonstrating the model's practical applicability. This research emphasizes the importance of MaxEnt in developing site predictive models, offering a valuable tool for optimizing palaeontological field surveys. While highlighting the model's success, the study also recognizes its limitations, especially concerning landscape and vegetation changes over time. Overall, this work establishes a foundation for further research in predictive modelling for palaeontological exploration in the Siwalik region and emphasizes the need for multidisciplinary efforts in salvage palaeontology to mitigate anthropogenic threats.

西瓦利克山古生物遗址 MaxEnt 预测模型:印度北部昌迪加尔附近上西瓦利克山平乔地层的案例研究
本研究介绍了 MaxEnt 预测模型在西瓦利克山潜在古生物遗址识别中的应用,重点是印度北部昌迪加尔附近的平乔地层。西瓦利克地区拥有丰富的脊椎动物古生物记录,但缺乏全面的遗址预测模型。这项研究采用 MaxEnt(3.4.0)软件来预测适合化石出现的区域。从文献和实地调查中获得了地理参照存在数据,用于训练模型。环境预测因子包括品位地质沉积边界、植被指数(NDVI)以及坡度和倾斜度,均来自数字高程模型。此外,模型开发还包括参数调整,以开发出一个潜在的有用模型。通过步行调查对模型进行实地验证,确定了新的化石地点,证明了模型的实际应用性。这项研究强调了 MaxEnt 在开发遗址预测模型方面的重要性,为优化古生物实地勘测提供了宝贵的工具。在强调模型成功的同时,研究也认识到了其局限性,尤其是在地貌和植被随时间的变化方面。总之,这项工作为进一步研究西瓦利克地区古生物勘探的预测模型奠定了基础,并强调了在抢救古生物学方面开展多学科工作以减轻人为威胁的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信