Feng Li , Junyi Yang , Kwok-Yan Lam , Bowen Shen , Guiyi Wei
{"title":"Dynamic spectrum access for Internet-of-Things with joint GNN and DQN","authors":"Feng Li , Junyi Yang , Kwok-Yan Lam , Bowen Shen , Guiyi Wei","doi":"10.1016/j.adhoc.2024.103596","DOIUrl":null,"url":null,"abstract":"<div><p>With the rapid growth in access demand for Internet of Things (IoT) devices, effective utilization of spectrum resource has become a key challenge to ensure reliable communications. Traditional dynamic spectrum access methods are inefficient when there are too many device accesses, channel reductions, and channel quality deterioration. In this paper, we propose a dynamic spectrum access method based on a fusion algorithm of graph neural network (GNN) and deep Q network (DQN), improving spectrum access efficiency while maintaining a good access success accuracy. Compared with traditional DQN, the computation time can be reduced by over 35%. Our approach first uses GNN to interact with the environment and predict the state of the IoT spectrum environment. Subsequently, automatic learning and optimization of spectrum access policies are achieved by selecting the mobile IoT user’s actions based on these predicted states using the DQN’s target network, experience playback, and reinforcement learning techniques. Simulation results show that the system model based on the proposed method can operate with better efficiency than the conventional method while maintaining a good channel access rate and channel quality.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870524002075","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid growth in access demand for Internet of Things (IoT) devices, effective utilization of spectrum resource has become a key challenge to ensure reliable communications. Traditional dynamic spectrum access methods are inefficient when there are too many device accesses, channel reductions, and channel quality deterioration. In this paper, we propose a dynamic spectrum access method based on a fusion algorithm of graph neural network (GNN) and deep Q network (DQN), improving spectrum access efficiency while maintaining a good access success accuracy. Compared with traditional DQN, the computation time can be reduced by over 35%. Our approach first uses GNN to interact with the environment and predict the state of the IoT spectrum environment. Subsequently, automatic learning and optimization of spectrum access policies are achieved by selecting the mobile IoT user’s actions based on these predicted states using the DQN’s target network, experience playback, and reinforcement learning techniques. Simulation results show that the system model based on the proposed method can operate with better efficiency than the conventional method while maintaining a good channel access rate and channel quality.
期刊介绍:
The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to:
Mobile and Wireless Ad Hoc Networks
Sensor Networks
Wireless Local and Personal Area Networks
Home Networks
Ad Hoc Networks of Autonomous Intelligent Systems
Novel Architectures for Ad Hoc and Sensor Networks
Self-organizing Network Architectures and Protocols
Transport Layer Protocols
Routing protocols (unicast, multicast, geocast, etc.)
Media Access Control Techniques
Error Control Schemes
Power-Aware, Low-Power and Energy-Efficient Designs
Synchronization and Scheduling Issues
Mobility Management
Mobility-Tolerant Communication Protocols
Location Tracking and Location-based Services
Resource and Information Management
Security and Fault-Tolerance Issues
Hardware and Software Platforms, Systems, and Testbeds
Experimental and Prototype Results
Quality-of-Service Issues
Cross-Layer Interactions
Scalability Issues
Performance Analysis and Simulation of Protocols.