{"title":"Understanding plant responsiveness to microbiome feedbacks","authors":"","doi":"10.1016/j.pbi.2024.102603","DOIUrl":null,"url":null,"abstract":"<div><p>Plant microbiome interactions are bidirectional with processes leading to microbiome assembly and processes leading to effects on plants, so called microbiome feedbacks. With belowground focus we systematically decomposed both of these directions into plant and (root and rhizosphere) microbiome components to identify methodological challenges and research priorities. We found that the bidirectionality of plant microbiome interactions presents a challenge for genetic studies. Establishing causality is particularly difficult when a plant mutant has both, an altered phenotype and an altered microbiome. Is the mutation directly affecting the microbiome (e.g., through root exudates), which then causes an altered phenotype of the plant and/or is the altered microbiome the consequence of the mutation altering the plant's phenotype (e.g., root architecture)? Here, we put forward that feedback experiments allow to separate cause and effect and furthermore, they are useful for investigating plant interactions with complex microbiomes in natural soils. They especially allow to investigate the plant genetic basis how plants respond to soil microbiomes and we stress that such microbiome feedbacks are understudied compared to the mechanisms contributing to microbiome assembly. Thinking towards application, this may allow to develop crops with both abilities to assemble a beneficial microbiome and to actively exploit its feedbacks.</p></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369526624000943/pdfft?md5=107a1d3f8c323184b75991d3f09b6ce5&pid=1-s2.0-S1369526624000943-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in plant biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369526624000943","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Plant microbiome interactions are bidirectional with processes leading to microbiome assembly and processes leading to effects on plants, so called microbiome feedbacks. With belowground focus we systematically decomposed both of these directions into plant and (root and rhizosphere) microbiome components to identify methodological challenges and research priorities. We found that the bidirectionality of plant microbiome interactions presents a challenge for genetic studies. Establishing causality is particularly difficult when a plant mutant has both, an altered phenotype and an altered microbiome. Is the mutation directly affecting the microbiome (e.g., through root exudates), which then causes an altered phenotype of the plant and/or is the altered microbiome the consequence of the mutation altering the plant's phenotype (e.g., root architecture)? Here, we put forward that feedback experiments allow to separate cause and effect and furthermore, they are useful for investigating plant interactions with complex microbiomes in natural soils. They especially allow to investigate the plant genetic basis how plants respond to soil microbiomes and we stress that such microbiome feedbacks are understudied compared to the mechanisms contributing to microbiome assembly. Thinking towards application, this may allow to develop crops with both abilities to assemble a beneficial microbiome and to actively exploit its feedbacks.
期刊介绍:
Current Opinion in Plant Biology builds on Elsevier's reputation for excellence in scientific publishing and long-standing commitment to communicating high quality reproducible research. It is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy - of editorial excellence, high-impact, and global reach - to ensure they are a widely read resource that is integral to scientists' workflow.