{"title":"The effect of ischemic preconditioning on repeated sprint cycling performance: a randomized crossover study.","authors":"Xinpeng Gao, Anjie Wang, Junli Fan, Tingran Zhang, Caiyan Li, Ting Yue, Chansol Hurr","doi":"10.23736/S0022-4707.24.16015-X","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ischemic preconditioning (IPC) has been suggested to improve exercise performance by 1-8%. Prior research concerning its impact on short-duration exercises, such as sprints, has been limited and yielded conflicting results. The aim of this study, which included a non-occlusion-based placebo control, was to determine whether IPC improves repeated sprint performance in a manner that accounted for psychophysiological effects.</p><p><strong>Methods: </strong>Twenty-two healthy males participated in this study, which employed a randomized crossover design. Following the 10-min baseline period, participants received intervention under four different conditions: 1) no-intervention control (CON); 2) non-occlusion-based placebo control (SHAM); 3) remote IPC (RIPC); and 4) local IPC (LIPC). Participants then performed a standardized repeated sprint cycling (5×10s maximal cycling sprint, separated by a 40-s rest in each set).</p><p><strong>Results: </strong>Repeated sprint performance, as indexed by average power output, peak power output, and total work, the improvement was observed in the RIPC and LIPC during the initial phase (set 1-3) when compared with CON (P<0.05). SHAM condition also showed an increase in peak power output in the set 1 (CON 9.97±1.05 vs. SHAM 10.30±1.13 w/kg, P<0.05), which may represent a psychophysiological component in the IPC-induced improvement. Higher lactate concertation was found in the SHAM and LIPC groups, than in the CON group, 5 minutes after the exercise (CON 15.72±0.68 vs. SHAM 16.82±0.41 vs. LIPC 17.19±0.39 mmol/L, P<0.0001 for both, respectively).</p><p><strong>Conclusions: </strong>In conclusion, LIPC enhanced repeated sprint cycling performance during the initial phase, beyond what could be accounted for entirely by a psychophysiological effect. The improvement associated with RIPC, however, did not surpass the effect of a placebo intervention.</p>","PeriodicalId":17013,"journal":{"name":"Journal of Sports Medicine and Physical Fitness","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sports Medicine and Physical Fitness","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.23736/S0022-4707.24.16015-X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Ischemic preconditioning (IPC) has been suggested to improve exercise performance by 1-8%. Prior research concerning its impact on short-duration exercises, such as sprints, has been limited and yielded conflicting results. The aim of this study, which included a non-occlusion-based placebo control, was to determine whether IPC improves repeated sprint performance in a manner that accounted for psychophysiological effects.
Methods: Twenty-two healthy males participated in this study, which employed a randomized crossover design. Following the 10-min baseline period, participants received intervention under four different conditions: 1) no-intervention control (CON); 2) non-occlusion-based placebo control (SHAM); 3) remote IPC (RIPC); and 4) local IPC (LIPC). Participants then performed a standardized repeated sprint cycling (5×10s maximal cycling sprint, separated by a 40-s rest in each set).
Results: Repeated sprint performance, as indexed by average power output, peak power output, and total work, the improvement was observed in the RIPC and LIPC during the initial phase (set 1-3) when compared with CON (P<0.05). SHAM condition also showed an increase in peak power output in the set 1 (CON 9.97±1.05 vs. SHAM 10.30±1.13 w/kg, P<0.05), which may represent a psychophysiological component in the IPC-induced improvement. Higher lactate concertation was found in the SHAM and LIPC groups, than in the CON group, 5 minutes after the exercise (CON 15.72±0.68 vs. SHAM 16.82±0.41 vs. LIPC 17.19±0.39 mmol/L, P<0.0001 for both, respectively).
Conclusions: In conclusion, LIPC enhanced repeated sprint cycling performance during the initial phase, beyond what could be accounted for entirely by a psychophysiological effect. The improvement associated with RIPC, however, did not surpass the effect of a placebo intervention.
期刊介绍:
The Journal of Sports Medicine and Physical Fitness publishes scientific papers relating to the area of the applied physiology, preventive medicine, sports medicine and traumatology, sports psychology. Manuscripts may be submitted in the form of editorials, original articles, review articles, case reports, special articles, letters to the Editor and guidelines.