{"title":"The key roles of thyroid hormone in mitochondrial regulation, at interface of human health and disease.","authors":"Serena Sagliocchi, Federica Restolfer, Alessandro Cossidente, Monica Dentice","doi":"10.1515/jbcpp-2024-0108","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria are highly plastic and dynamic organelles long known as the powerhouse of cellular bioenergetics, but also endowed with a critical role in stress responses and homeostasis maintenance, supporting and integrating activities across multifaced cellular processes. As a such, mitochondria dysfunctions are leading causes of a wide range of diseases and pathologies. Thyroid hormones (THs) are endocrine regulators of cellular metabolism, regulating intracellular nutrients fueling of sugars, amino acids and fatty acids. For instance, THs regulate the balance between the anabolism and catabolism of all the macro-molecules, influencing energy homeostasis during different nutritional conditions. Noteworthy, not only most of the TH-dependent metabolic modulations act via the mitochondria, but also THs have been proved to regulate the mitochondrial biosynthesis, dynamics and function. The significance of such an interplay is different in the context of specific tissues and strongly impacts on cellular homeostasis. Thus, a comprehensive understanding of THs-dependent mitochondrial functions and dynamics is required to develop more precise strategies for targeting mitochondrial function. Herein, we describe the mechanisms of TH-dependent metabolic regulation with a focus on mitochondrial action, in different tissue contexts, thus providing new insights for targeted modulation of mitochondrial dynamics.</p>","PeriodicalId":15352,"journal":{"name":"Journal of Basic and Clinical Physiology and Pharmacology","volume":" ","pages":"231-240"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522957/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Basic and Clinical Physiology and Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jbcpp-2024-0108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondria are highly plastic and dynamic organelles long known as the powerhouse of cellular bioenergetics, but also endowed with a critical role in stress responses and homeostasis maintenance, supporting and integrating activities across multifaced cellular processes. As a such, mitochondria dysfunctions are leading causes of a wide range of diseases and pathologies. Thyroid hormones (THs) are endocrine regulators of cellular metabolism, regulating intracellular nutrients fueling of sugars, amino acids and fatty acids. For instance, THs regulate the balance between the anabolism and catabolism of all the macro-molecules, influencing energy homeostasis during different nutritional conditions. Noteworthy, not only most of the TH-dependent metabolic modulations act via the mitochondria, but also THs have been proved to regulate the mitochondrial biosynthesis, dynamics and function. The significance of such an interplay is different in the context of specific tissues and strongly impacts on cellular homeostasis. Thus, a comprehensive understanding of THs-dependent mitochondrial functions and dynamics is required to develop more precise strategies for targeting mitochondrial function. Herein, we describe the mechanisms of TH-dependent metabolic regulation with a focus on mitochondrial action, in different tissue contexts, thus providing new insights for targeted modulation of mitochondrial dynamics.
期刊介绍:
The Journal of Basic and Clinical Physiology and Pharmacology (JBCPP) is a peer-reviewed bi-monthly published journal in experimental medicine. JBCPP publishes novel research in the physiological and pharmacological sciences, including brain research; cardiovascular-pulmonary interactions; exercise; thermal control; haematology; immune response; inflammation; metabolism; oxidative stress; and phytotherapy. As the borders between physiology, pharmacology and biochemistry become increasingly blurred, we also welcome papers using cutting-edge techniques in cellular and/or molecular biology to link descriptive or behavioral studies with cellular and molecular mechanisms underlying the integrative processes. Topics: Behavior and Neuroprotection, Reproduction, Genotoxicity and Cytotoxicity, Vascular Conditions, Cardiovascular Function, Cardiovascular-Pulmonary Interactions, Oxidative Stress, Metabolism, Immune Response, Hematological Profile, Inflammation, Infection, Phytotherapy.