Jean Victor Dos Santos Emiliano, Andressa Fusieger, Anderson Carlos Camargo, Fabíola Faria da Cruz Rodrigues, Luís Augusto Nero, Ítalo Tuler Perrone, Antônio Fernandes de Carvalho
{"title":"<i>Staphylococcus aureus</i> in Dairy Industry: Enterotoxin Production, Biofilm Formation, and Use of Lactic Acid Bacteria for Its Biocontrol.","authors":"Jean Victor Dos Santos Emiliano, Andressa Fusieger, Anderson Carlos Camargo, Fabíola Faria da Cruz Rodrigues, Luís Augusto Nero, Ítalo Tuler Perrone, Antônio Fernandes de Carvalho","doi":"10.1089/fpd.2023.0170","DOIUrl":null,"url":null,"abstract":"<p><p><i>Staphylococcus aureus</i> is a well-known pathogen capable of producing enterotoxins during bacterial growth in contaminated food, and the ingestion of such preformed toxins is one of the major causes of food poisoning around the world. Nowadays 33 staphylococcal enterotoxins (SEs) and SE-like toxins have been described, but nearly 95% of confirmed foodborne outbreaks are attributed to classical enterotoxins SEA, SEB, SEC, SED, and SEE. The natural habitat of <i>S. aureus</i> includes the skin and mucous membranes of both humans and animals, allowing the contamination of milk, its derivatives, and the processing facilities. <i>S. aureus</i> is well known for the ability to form biofilms in food processing environments, which contributes to its persistence and cross-contamination in food. The biocontrol of <i>S. aureus</i> in foods by lactic acid bacteria (LAB) and their bacteriocins has been studied for many years. Recently, LAB and their metabolites have also been explored for controlling <i>S. aureus</i> biofilms. LAB are used in fermented foods since in ancient times and nowadays characterized strains (or their purified bacteriocin) can be intentionally added to prolong food shelf-life and to control the growth of potentially pathogenic bacteria. Regarding the use of these microorganism and their metabolites (such as organic acids and bacteriocins) to prevent biofilm development or for biofilm removal, it is possible to conclude that a complex network behind the antagonistic activity remains poorly understood at the molecular level. The use of approaches that allow the characterization of these interactions is necessary to enhance our understanding of the mechanisms that govern the inhibitory activity of LAB against <i>S. aureus</i> biofilms in food processing environments.</p>","PeriodicalId":12333,"journal":{"name":"Foodborne pathogens and disease","volume":" ","pages":"601-616"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foodborne pathogens and disease","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1089/fpd.2023.0170","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Staphylococcus aureus is a well-known pathogen capable of producing enterotoxins during bacterial growth in contaminated food, and the ingestion of such preformed toxins is one of the major causes of food poisoning around the world. Nowadays 33 staphylococcal enterotoxins (SEs) and SE-like toxins have been described, but nearly 95% of confirmed foodborne outbreaks are attributed to classical enterotoxins SEA, SEB, SEC, SED, and SEE. The natural habitat of S. aureus includes the skin and mucous membranes of both humans and animals, allowing the contamination of milk, its derivatives, and the processing facilities. S. aureus is well known for the ability to form biofilms in food processing environments, which contributes to its persistence and cross-contamination in food. The biocontrol of S. aureus in foods by lactic acid bacteria (LAB) and their bacteriocins has been studied for many years. Recently, LAB and their metabolites have also been explored for controlling S. aureus biofilms. LAB are used in fermented foods since in ancient times and nowadays characterized strains (or their purified bacteriocin) can be intentionally added to prolong food shelf-life and to control the growth of potentially pathogenic bacteria. Regarding the use of these microorganism and their metabolites (such as organic acids and bacteriocins) to prevent biofilm development or for biofilm removal, it is possible to conclude that a complex network behind the antagonistic activity remains poorly understood at the molecular level. The use of approaches that allow the characterization of these interactions is necessary to enhance our understanding of the mechanisms that govern the inhibitory activity of LAB against S. aureus biofilms in food processing environments.
期刊介绍:
Foodborne Pathogens and Disease is one of the most inclusive scientific publications on the many disciplines that contribute to food safety. Spanning an array of issues from "farm-to-fork," the Journal bridges the gap between science and policy to reduce the burden of foodborne illness worldwide.
Foodborne Pathogens and Disease coverage includes:
Agroterrorism
Safety of organically grown and genetically modified foods
Emerging pathogens
Emergence of drug resistance
Methods and technology for rapid and accurate detection
Strategies to destroy or control foodborne pathogens
Novel strategies for the prevention and control of plant and animal diseases that impact food safety
Biosecurity issues and the implications of new regulatory guidelines
Impact of changing lifestyles and consumer demands on food safety.