Claudia F. Romero-Flores, Rogelio Bustamante-Bello, Marcos Moya Bencomo, Erick Axel Martinez-Ríos, Luis Montesinos
{"title":"Optical Marker-Based Motion Capture of the Human Spine: A Scoping Review of Study Design and Outcomes","authors":"Claudia F. Romero-Flores, Rogelio Bustamante-Bello, Marcos Moya Bencomo, Erick Axel Martinez-Ríos, Luis Montesinos","doi":"10.1007/s10439-024-03567-0","DOIUrl":null,"url":null,"abstract":"<div><p>Biomechanical analysis of the human spine is crucial to understanding injury patterns. Motion capture technology has gained attention due to its non-invasive nature. Nevertheless, traditional motion capture studies consider the spine a single rigid segment, although its alignment changes during movement. Moreover, guidelines that indicate where markers should be placed for a specific exercise do not exist. This study aims to review the methods used to assess spine biomechanics using motion capture systems to determine the marker sets used, the protocols used, the resulting parameters, the analysed activities, and the characteristics of the studied populations. PRISMA guidelines were used to perform a Scoping Review using SCOPUS and Web of Science databases. Fifty-six journal and conference articles from 1997 to 2023 were considered for the analysis. This review showed that Plug-in-Gait is the most used marker set. The lumbar spine is the segment that generates the most interest because of its high mobility and function as a weight supporter. Furthermore, angular position and velocity are the most common outcomes when studying the spine. Walking, standing, and range of movement were the most studied activities compared to sports and work-related activities. Male and female participants were recruited similarly across all included articles. This review presents the motion capture techniques and measurement outcomes of biomechanical studies of the human spine, to help standardize the field. This work also discusses trends in marker sets, study outcomes, studied segments and segmentation approaches.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><img></picture></div></div></figure></div></div>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":"52 9","pages":"2373 - 2387"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329589/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10439-024-03567-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Biomechanical analysis of the human spine is crucial to understanding injury patterns. Motion capture technology has gained attention due to its non-invasive nature. Nevertheless, traditional motion capture studies consider the spine a single rigid segment, although its alignment changes during movement. Moreover, guidelines that indicate where markers should be placed for a specific exercise do not exist. This study aims to review the methods used to assess spine biomechanics using motion capture systems to determine the marker sets used, the protocols used, the resulting parameters, the analysed activities, and the characteristics of the studied populations. PRISMA guidelines were used to perform a Scoping Review using SCOPUS and Web of Science databases. Fifty-six journal and conference articles from 1997 to 2023 were considered for the analysis. This review showed that Plug-in-Gait is the most used marker set. The lumbar spine is the segment that generates the most interest because of its high mobility and function as a weight supporter. Furthermore, angular position and velocity are the most common outcomes when studying the spine. Walking, standing, and range of movement were the most studied activities compared to sports and work-related activities. Male and female participants were recruited similarly across all included articles. This review presents the motion capture techniques and measurement outcomes of biomechanical studies of the human spine, to help standardize the field. This work also discusses trends in marker sets, study outcomes, studied segments and segmentation approaches.
期刊介绍:
Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.