Ina Hulsegge, Aniek C. Bouwman, Martijn F. L. Derks
{"title":"genomeprofile: Unveiling the genomic profile for livestock breeding through comprehensive SNP array-based genotyping","authors":"Ina Hulsegge, Aniek C. Bouwman, Martijn F. L. Derks","doi":"10.1111/age.13466","DOIUrl":null,"url":null,"abstract":"<p>In livestock breeding, single nucleotide polymorphism arrays have become a cornerstone of modern livestock breeding. SNP arrays facilitate the identification of genetic markers linked to economically important traits and provide a powerful tool for predicting breeding values. However, conventional breeding programs often overlook additional genomic features contained in the SNP array data that can provide valuable insights into the genetic diversity, copy number variation, inbreeding levels and potential challenges in breeding lines. Here we present <span>genomeprofile</span>, a tool using SNP array-based genomic data, offering a comprehensive profile of breeding animals including the identification of copy number variants and runs of homozygosity, and screening for aneuploidy. By integrating these features into the breeding landscape, <span>genomeprofile</span> enables a more comprehensive picture of genomic variation, ultimately enhancing precision breeding strategies. To illustrate the practicality and efficacy of <span>genomeprofile</span>, we applied the tool to a dataset of four pig breeding lines. The <span>genomeprofile</span> tool is a user-friendly tool that processes genotype data in <span>finalreport</span> or <span>plink</span> ped format efficiently into useful output. The output contains copy number variations, runs of homozygosity, selection signatures, aneuploidy and inbreeding per individual and across populations. This allows breeding companies and researchers to identify unique individuals or regions in the genome of interest based on routinely collected data.</p>","PeriodicalId":7905,"journal":{"name":"Animal genetics","volume":"55 5","pages":"793-797"},"PeriodicalIF":1.8000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/age.13466","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal genetics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/age.13466","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In livestock breeding, single nucleotide polymorphism arrays have become a cornerstone of modern livestock breeding. SNP arrays facilitate the identification of genetic markers linked to economically important traits and provide a powerful tool for predicting breeding values. However, conventional breeding programs often overlook additional genomic features contained in the SNP array data that can provide valuable insights into the genetic diversity, copy number variation, inbreeding levels and potential challenges in breeding lines. Here we present genomeprofile, a tool using SNP array-based genomic data, offering a comprehensive profile of breeding animals including the identification of copy number variants and runs of homozygosity, and screening for aneuploidy. By integrating these features into the breeding landscape, genomeprofile enables a more comprehensive picture of genomic variation, ultimately enhancing precision breeding strategies. To illustrate the practicality and efficacy of genomeprofile, we applied the tool to a dataset of four pig breeding lines. The genomeprofile tool is a user-friendly tool that processes genotype data in finalreport or plink ped format efficiently into useful output. The output contains copy number variations, runs of homozygosity, selection signatures, aneuploidy and inbreeding per individual and across populations. This allows breeding companies and researchers to identify unique individuals or regions in the genome of interest based on routinely collected data.
期刊介绍:
Animal Genetics reports frontline research on immunogenetics, molecular genetics and functional genomics of economically important and domesticated animals. Publications include the study of variability at gene and protein levels, mapping of genes, traits and QTLs, associations between genes and traits, genetic diversity, and characterization of gene or protein expression and control related to phenotypic or genetic variation.
The journal publishes full-length articles, short communications and brief notes, as well as commissioned and submitted mini-reviews on issues of interest to Animal Genetics readers.