Structural characterization and screening of chemical markers of alkaloids in Aconiti lateralis radix Praeparata and its processed products by UHPLC/Q-TOF-MS/MS and GNPS combining multivariate statistical methods based on the clinic
Jun Xiang, Qi Zhang, Qian Fan, Zekun Zhang, Haibo Huang, Aizhi Wu, Li Rong, Yumei Wang, Cuixian Zhang
{"title":"Structural characterization and screening of chemical markers of alkaloids in Aconiti lateralis radix Praeparata and its processed products by UHPLC/Q-TOF-MS/MS and GNPS combining multivariate statistical methods based on the clinic","authors":"Jun Xiang, Qi Zhang, Qian Fan, Zekun Zhang, Haibo Huang, Aizhi Wu, Li Rong, Yumei Wang, Cuixian Zhang","doi":"10.1002/rcm.9857","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n <h3> Rational</h3>\n \n <p><i>Aconiti Lateralis Radix Praeparata</i> (AC) is a traditional Chinese medicine with a long history of use. However, the current research on the material basis of AC and its processed products is still not comprehensive, especially the changes in lipo-diterpenoid alkaloids (LDAs) that can be hydrolyzed into diester-diterpenoid alkaloids in AC before and after processing. This study aimed to provide material basis guidance for the clinical use of AC and its processed products by comprehensively analyzing the changes in substances between AC and its processed products.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>An ultra-high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS/MS) approach was optimized to chemical profiling. The MS data were processed using molecular networking combined with the in-house library database to fast characterize the compounds. Multivariate statistical methods were adopted to determine the dissimilarities of components in AC and its processed products.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>A total of 310 compounds were tentatively identified from AC, including 109 potential new alkaloids, of which 98 were potential novel LPAs. A metabolomics approach was applied to find the characteristic marker components. As a result, 52 potential chemical markers were selected to distinguish the AC samples of different extraction methods and 42 potential chemical markers for differentiating between AC and its processed products were selected.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>The results indicate that UHPLC/Q-TOF-MS/MS and Global Natural Products Social Molecular Networking coupled with multivariate analysis strategies was a powerful tool to rapidly identify and screen the chemical markers of alkaloids between the AC samples and its processed products. These results also indicate that the toxicity of water extracts of AC and its processed products were decreased. This research not only guides the clinical safe use of AC and its processed products, but also extends the application of the molecular networking strategy in traditional herbal medicine.</p>\n </section>\n </div>","PeriodicalId":225,"journal":{"name":"Rapid Communications in Mass Spectrometry","volume":"38 18","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Communications in Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rcm.9857","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Rational
Aconiti Lateralis Radix Praeparata (AC) is a traditional Chinese medicine with a long history of use. However, the current research on the material basis of AC and its processed products is still not comprehensive, especially the changes in lipo-diterpenoid alkaloids (LDAs) that can be hydrolyzed into diester-diterpenoid alkaloids in AC before and after processing. This study aimed to provide material basis guidance for the clinical use of AC and its processed products by comprehensively analyzing the changes in substances between AC and its processed products.
Methods
An ultra-high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS/MS) approach was optimized to chemical profiling. The MS data were processed using molecular networking combined with the in-house library database to fast characterize the compounds. Multivariate statistical methods were adopted to determine the dissimilarities of components in AC and its processed products.
Results
A total of 310 compounds were tentatively identified from AC, including 109 potential new alkaloids, of which 98 were potential novel LPAs. A metabolomics approach was applied to find the characteristic marker components. As a result, 52 potential chemical markers were selected to distinguish the AC samples of different extraction methods and 42 potential chemical markers for differentiating between AC and its processed products were selected.
Conclusion
The results indicate that UHPLC/Q-TOF-MS/MS and Global Natural Products Social Molecular Networking coupled with multivariate analysis strategies was a powerful tool to rapidly identify and screen the chemical markers of alkaloids between the AC samples and its processed products. These results also indicate that the toxicity of water extracts of AC and its processed products were decreased. This research not only guides the clinical safe use of AC and its processed products, but also extends the application of the molecular networking strategy in traditional herbal medicine.
期刊介绍:
Rapid Communications in Mass Spectrometry is a journal whose aim is the rapid publication of original research results and ideas on all aspects of the science of gas-phase ions; it covers all the associated scientific disciplines. There is no formal limit on paper length ("rapid" is not synonymous with "brief"), but papers should be of a length that is commensurate with the importance and complexity of the results being reported. Contributions may be theoretical or practical in nature; they may deal with methods, techniques and applications, or with the interpretation of results; they may cover any area in science that depends directly on measurements made upon gaseous ions or that is associated with such measurements.