Causality-inspired crop pest recognition based on Decoupled Feature Learning.

IF 3.8 1区 农林科学 Q1 AGRONOMY
Tao Hu, Jianming Du, Keyu Yan, Wei Dong, Jie Zhang, Jun Wang, Chengjun Xie
{"title":"Causality-inspired crop pest recognition based on Decoupled Feature Learning.","authors":"Tao Hu, Jianming Du, Keyu Yan, Wei Dong, Jie Zhang, Jun Wang, Chengjun Xie","doi":"10.1002/ps.8314","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ensuring the efficient recognition and management of crop pests is crucial for maintaining the balance in global agricultural ecosystems and ecological harmony. Deep learning-based methods have shown promise in crop pest recognition. However, prevailing methods often fail to address a critical issue: biased pest training dataset distribution stemming from the tendency to collect images primarily in certain environmental contexts, such as paddy fields. This oversight hampers recognition accuracy when encountering pest images dissimilar to training samples, highlighting the need for a novel approach to overcome this limitation.</p><p><strong>Results: </strong>We introduce the Decoupled Feature Learning (DFL) framework, leveraging causal inference techniques to handle training dataset bias. DFL manipulates the training data based on classification confidence to construct different training domains and employs center triplet loss for learning class-core features. The proposed DFL framework significantly boosts existing baseline models, attaining unprecedented recognition accuracies of 95.33%, 92.59%, and 74.86% on the Li, DFSPD, and IP102 datasets, respectively.</p><p><strong>Conclusion: </strong>Extensive testing on three pest datasets using standard baseline models demonstrates the superiority of DFL in pest recognition. The visualization results show that DFL encourages the baseline models to capture the class-core features. The proposed DFL marks a pivotal step in mitigating the issue of data distribution bias, enhancing the reliability of deep learning in agriculture. © 2024 Society of Chemical Industry.</p>","PeriodicalId":218,"journal":{"name":"Pest Management Science","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pest Management Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/ps.8314","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Ensuring the efficient recognition and management of crop pests is crucial for maintaining the balance in global agricultural ecosystems and ecological harmony. Deep learning-based methods have shown promise in crop pest recognition. However, prevailing methods often fail to address a critical issue: biased pest training dataset distribution stemming from the tendency to collect images primarily in certain environmental contexts, such as paddy fields. This oversight hampers recognition accuracy when encountering pest images dissimilar to training samples, highlighting the need for a novel approach to overcome this limitation.

Results: We introduce the Decoupled Feature Learning (DFL) framework, leveraging causal inference techniques to handle training dataset bias. DFL manipulates the training data based on classification confidence to construct different training domains and employs center triplet loss for learning class-core features. The proposed DFL framework significantly boosts existing baseline models, attaining unprecedented recognition accuracies of 95.33%, 92.59%, and 74.86% on the Li, DFSPD, and IP102 datasets, respectively.

Conclusion: Extensive testing on three pest datasets using standard baseline models demonstrates the superiority of DFL in pest recognition. The visualization results show that DFL encourages the baseline models to capture the class-core features. The proposed DFL marks a pivotal step in mitigating the issue of data distribution bias, enhancing the reliability of deep learning in agriculture. © 2024 Society of Chemical Industry.

基于解耦特征学习的因果关系启发式作物害虫识别。
背景:确保高效识别和管理农作物害虫对于维持全球农业生态系统的平衡和生态和谐至关重要。基于深度学习的方法在农作物害虫识别方面大有可为。然而,现有的方法往往无法解决一个关键问题:害虫训练数据集的分布存在偏差,这是因为人们倾向于主要在某些环境背景下(如稻田)收集图像。当遇到与训练样本不同的害虫图像时,这种疏忽会影响识别准确性,因此需要一种新方法来克服这一局限:我们引入了解耦特征学习(DFL)框架,利用因果推理技术来处理训练数据集的偏差。DFL 基于分类置信度来处理训练数据,以构建不同的训练域,并采用中心三重损失来学习类核特征。所提出的 DFL 框架大大提高了现有基线模型的性能,在 Li、DFSPD 和 IP102 数据集上的识别准确率分别达到了前所未有的 95.33%、92.59% 和 74.86%:结论:使用标准基线模型对三个害虫数据集进行的广泛测试证明了 DFL 在害虫识别方面的优越性。可视化结果表明,DFL 鼓励基线模型捕捉类核心特征。所提出的 DFL 标志着在缓解数据分布偏差问题上迈出了关键一步,增强了深度学习在农业领域的可靠性。© 2024 化学工业学会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pest Management Science
Pest Management Science 农林科学-昆虫学
CiteScore
7.90
自引率
9.80%
发文量
553
审稿时长
4.8 months
期刊介绍: Pest Management Science is the international journal of research and development in crop protection and pest control. Since its launch in 1970, the journal has become the premier forum for papers on the discovery, application, and impact on the environment of products and strategies designed for pest management. Published for SCI by John Wiley & Sons Ltd.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信