Louis Caussin, Abdelaziz Jouaiti, Daniel Chartrand, W. G. Skene and Sylvie Ferlay
{"title":"Tuning the dimensionality in chiral and racemic organic/tin hybrids with halides†","authors":"Louis Caussin, Abdelaziz Jouaiti, Daniel Chartrand, W. G. Skene and Sylvie Ferlay","doi":"10.1039/D4DT01645A","DOIUrl":null,"url":null,"abstract":"<p >Chiral 1D tin iodides EBASnI<small><sub>3</sub></small> were synthesized while incorporating enantiomerically pure and racemic ethylbenzylammonium (EBA) cations between the 1D shared inorganic corners. The dimensionality was reduced to 0D when replacing iodine with bromine. In all the cases, the presence of hydrogen bonds was observed between the organic part and the inorganic part, while transfer of chirality was evidenced for the EBASnI<small><sub>3</sub></small> enantiomerically pure compounds.</p>","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":" 30","pages":" 12755-12763"},"PeriodicalIF":3.3000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dt/d4dt01645a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/dt/d4dt01645a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Chiral 1D tin iodides EBASnI3 were synthesized while incorporating enantiomerically pure and racemic ethylbenzylammonium (EBA) cations between the 1D shared inorganic corners. The dimensionality was reduced to 0D when replacing iodine with bromine. In all the cases, the presence of hydrogen bonds was observed between the organic part and the inorganic part, while transfer of chirality was evidenced for the EBASnI3 enantiomerically pure compounds.
期刊介绍:
Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.