Qiang Yu, Liguang Jiang, Raphael Schneider, Yi Zheng, Junguo Liu
{"title":"Deciphering the Mechanism of Better Predictions of Regional LSTM Models in Ungauged Basins","authors":"Qiang Yu, Liguang Jiang, Raphael Schneider, Yi Zheng, Junguo Liu","doi":"10.1029/2023wr035876","DOIUrl":null,"url":null,"abstract":"Prediction in ungauged basins (PUB) is a concerning hydrological challenge, prompting the development of various regionalization methods to improve prediction accuracy. The long short-term memory (LSTM) model has gained popularity in rainfall-runoff prediction in recent years and has proven applicable in PUB. Prior research indicates that incorporating static attributes in the training of regional LSTM models could improve performance in PUB. However, the underlying reasons for this enhancement have received limited exploration. This study aims to explore the role of static attributes in the training of the regional LSTM model. It is assumed that the regional LSTM model can induce streamflow generation mechanisms with the incorporation of static attributes and apply certain streamflow generation mechanisms to ungauged catchments based on their attributes. To this end, a grouping-based training strategy is proposed, that is, training and validating regional LSTM models on catchments with similar streamflow generation mechanisms within predefined groups. The training strategies of regional LSTM models, either incorporated with static catchment attributes or based on classification, are conducted in 363 catchments. Results demonstrate a high level of consistency in the enhancement achieved by the two training strategies. Specifically, 192 and 216 catchments exhibit enhancement compared to traditionally trained models without inclusion of attributes, with 132 catchments showing improvement under both training strategies. Furthermore, the findings indicate consistent spatial patterns and attribute distributions of enhanced catchments, as well as the notable improvement in reproducing low flow-related hydrological signatures.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023wr035876","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Prediction in ungauged basins (PUB) is a concerning hydrological challenge, prompting the development of various regionalization methods to improve prediction accuracy. The long short-term memory (LSTM) model has gained popularity in rainfall-runoff prediction in recent years and has proven applicable in PUB. Prior research indicates that incorporating static attributes in the training of regional LSTM models could improve performance in PUB. However, the underlying reasons for this enhancement have received limited exploration. This study aims to explore the role of static attributes in the training of the regional LSTM model. It is assumed that the regional LSTM model can induce streamflow generation mechanisms with the incorporation of static attributes and apply certain streamflow generation mechanisms to ungauged catchments based on their attributes. To this end, a grouping-based training strategy is proposed, that is, training and validating regional LSTM models on catchments with similar streamflow generation mechanisms within predefined groups. The training strategies of regional LSTM models, either incorporated with static catchment attributes or based on classification, are conducted in 363 catchments. Results demonstrate a high level of consistency in the enhancement achieved by the two training strategies. Specifically, 192 and 216 catchments exhibit enhancement compared to traditionally trained models without inclusion of attributes, with 132 catchments showing improvement under both training strategies. Furthermore, the findings indicate consistent spatial patterns and attribute distributions of enhanced catchments, as well as the notable improvement in reproducing low flow-related hydrological signatures.
期刊介绍:
Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.