Fatema S. Alatawi, Awatif M. E. Omran, Mohsen S. Alatawi, Eman Rashad, Noha A. E. Yasin, Ahmed F. Soliman
{"title":"Network Pharmacology Prediction and Experimental Validation of Ferulic Acid’s Protective Effects against Diclofenac-Induced Liver Injury","authors":"Fatema S. Alatawi, Awatif M. E. Omran, Mohsen S. Alatawi, Eman Rashad, Noha A. E. Yasin, Ahmed F. Soliman","doi":"10.1155/2024/5592390","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Despite being one of the most consumed analgesics worldwide, liver injury is an adverse effect of diclofenac (DF). In pursuit of reliable hepatoprotective natural remedies, this study aimed to investigate the potential protective effect of ferulic acid (FA) and its mechanism against DF-induced liver injury. Various network databases and datasets were used to collect targets corresponding to FA and DF-induced liver injury. Enrichment analyses of common targets were performed, a protein-protein interaction (PPI) network was constructed, the hub genes were identified, and the upstream miRNA interacting with the top hub gene was later predicted. A DF-induced liver injury rat model was established to verify FA’s protective effects, and the selected hub gene expression level with its upstream regulatory miRNA and a downstream set of targets was examined to elucidate the underlying mechanism. A total of 18 genes were identified as potential targets of FA to protect against DF-induced liver injury. Data from the enrichment and PPI analyses and the prediction of the upstream miRNAs indicated that the most worthwhile pair to study was miR-296-5p/<i>Jun</i>. <i>In vivo</i> findings showed that coadministration of FA significantly reduced the DF-induced alterations in the liver function indices, oxidative stress, and liver histology. Mechanistically, FA downregulated the expression of <i>Jun</i>, <i>Bim</i>, <i>Bax</i>, <i>Casp3</i>, IL-1<i>β</i>, IL-6, and TNF-<i>α</i>, whereas it upregulated the expression of rno-miR-296-5p and <i>Bcl2</i>. In conclusion, combining network pharmacology and an <i>in vivo</i> study revealed that miR-296-5p/<i>Jun</i> axis could mediate the mitigative effect of FA against DF-induced liver injury.</p>\n </div>","PeriodicalId":15802,"journal":{"name":"Journal of Food Biochemistry","volume":"2024 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5592390","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/5592390","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite being one of the most consumed analgesics worldwide, liver injury is an adverse effect of diclofenac (DF). In pursuit of reliable hepatoprotective natural remedies, this study aimed to investigate the potential protective effect of ferulic acid (FA) and its mechanism against DF-induced liver injury. Various network databases and datasets were used to collect targets corresponding to FA and DF-induced liver injury. Enrichment analyses of common targets were performed, a protein-protein interaction (PPI) network was constructed, the hub genes were identified, and the upstream miRNA interacting with the top hub gene was later predicted. A DF-induced liver injury rat model was established to verify FA’s protective effects, and the selected hub gene expression level with its upstream regulatory miRNA and a downstream set of targets was examined to elucidate the underlying mechanism. A total of 18 genes were identified as potential targets of FA to protect against DF-induced liver injury. Data from the enrichment and PPI analyses and the prediction of the upstream miRNAs indicated that the most worthwhile pair to study was miR-296-5p/Jun. In vivo findings showed that coadministration of FA significantly reduced the DF-induced alterations in the liver function indices, oxidative stress, and liver histology. Mechanistically, FA downregulated the expression of Jun, Bim, Bax, Casp3, IL-1β, IL-6, and TNF-α, whereas it upregulated the expression of rno-miR-296-5p and Bcl2. In conclusion, combining network pharmacology and an in vivo study revealed that miR-296-5p/Jun axis could mediate the mitigative effect of FA against DF-induced liver injury.
期刊介绍:
The Journal of Food Biochemistry publishes fully peer-reviewed original research and review papers on the effects of handling, storage, and processing on the biochemical aspects of food tissues, systems, and bioactive compounds in the diet.
Researchers in food science, food technology, biochemistry, and nutrition, particularly based in academia and industry, will find much of great use and interest in the journal. Coverage includes:
-Biochemistry of postharvest/postmortem and processing problems
-Enzyme chemistry and technology
-Membrane biology and chemistry
-Cell biology
-Biophysics
-Genetic expression
-Pharmacological properties of food ingredients with an emphasis on the content of bioactive ingredients in foods
Examples of topics covered in recently-published papers on two topics of current wide interest, nutraceuticals/functional foods and postharvest/postmortem, include the following:
-Bioactive compounds found in foods, such as chocolate and herbs, as they affect serum cholesterol, diabetes, hypertension, and heart disease
-The mechanism of the ripening process in fruit
-The biogenesis of flavor precursors in meat
-How biochemical changes in farm-raised fish are affecting processing and edible quality