The maturation of native uropathogenic Escherichia coli biofilms seen through a non-interventional lens

IF 5.9 Q1 MICROBIOLOGY
{"title":"The maturation of native uropathogenic Escherichia coli biofilms seen through a non-interventional lens","authors":"","doi":"10.1016/j.bioflm.2024.100212","DOIUrl":null,"url":null,"abstract":"<div><p>Urinary tract infections (UTI) caused by uropathogenic <em>Escherichia coli</em> (UPEC) are a significant global health challenge. The UPEC biofilm lifestyle is believed to play an important role in infection recurrency and treatment resistance, but our understanding of how the extracellular matrix (ECM) components curli and cellulose contribute to biofilm formation and pathogenicity is limited. Here, we study the spatial and temporal development of native UPEC biofilm using agar-based detection methods where the non-toxic, optically active fluorescent tracer EbbaBiolight 680 reports the expression and structural location of curli in real-time. An <em>in vitro</em> screen of the biofilm capacity of common UPEC strains reveals significant strain variability and identifies UPEC No. 12 (UPEC12) as a strong biofilm former at 28 °C and 37 °C. Non-interventional microscopy, including time-lapse and 2-photon, reveal significant horizontal and vertical heterogeneity in the UPEC12 biofilm structure. We identify region-specific expression of curli, with a shift in localization from the bottom of the flat central regions of the biofilm to the upper surface in the topographically dramatic intermediate region. When investigating if the rdar morphotype affects wettability of the biofilm surface, we found that the nano-architecture of curli guided by cellulose, rather than the rdar macrostructures, leads to increased hydrophobicity of the biofilm. By providing new insights at exceptional temporal and spatial resolution, we demonstrate how non-interventional analysis of native biofilms will facilitate the next generation of understanding into the roles of ECM components during growth of UPEC biofilms and their contribution to the pathogenesis of UTI.</p></div>","PeriodicalId":55844,"journal":{"name":"Biofilm","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590207524000376/pdfft?md5=686f47897b4df26bfcbcb4f12961721c&pid=1-s2.0-S2590207524000376-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofilm","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590207524000376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Urinary tract infections (UTI) caused by uropathogenic Escherichia coli (UPEC) are a significant global health challenge. The UPEC biofilm lifestyle is believed to play an important role in infection recurrency and treatment resistance, but our understanding of how the extracellular matrix (ECM) components curli and cellulose contribute to biofilm formation and pathogenicity is limited. Here, we study the spatial and temporal development of native UPEC biofilm using agar-based detection methods where the non-toxic, optically active fluorescent tracer EbbaBiolight 680 reports the expression and structural location of curli in real-time. An in vitro screen of the biofilm capacity of common UPEC strains reveals significant strain variability and identifies UPEC No. 12 (UPEC12) as a strong biofilm former at 28 °C and 37 °C. Non-interventional microscopy, including time-lapse and 2-photon, reveal significant horizontal and vertical heterogeneity in the UPEC12 biofilm structure. We identify region-specific expression of curli, with a shift in localization from the bottom of the flat central regions of the biofilm to the upper surface in the topographically dramatic intermediate region. When investigating if the rdar morphotype affects wettability of the biofilm surface, we found that the nano-architecture of curli guided by cellulose, rather than the rdar macrostructures, leads to increased hydrophobicity of the biofilm. By providing new insights at exceptional temporal and spatial resolution, we demonstrate how non-interventional analysis of native biofilms will facilitate the next generation of understanding into the roles of ECM components during growth of UPEC biofilms and their contribution to the pathogenesis of UTI.

从非常规视角观察原生尿路致病性大肠埃希菌生物膜的成熟过程
由尿路致病性大肠杆菌(UPEC)引起的尿路感染(UTI)是全球健康面临的重大挑战。据信,UPEC 的生物膜生活方式在感染复发和耐药性方面发挥着重要作用,但我们对细胞外基质(ECM)成分 Curli 和纤维素如何促进生物膜形成和致病性的了解却很有限。在这里,我们使用基于琼脂的检测方法研究了原生 UPEC 生物膜的空间和时间发展,其中无毒、光学活性荧光示踪剂 EbbaBiolight 680 实时报告了 curli 的表达和结构位置。对常见的 UPEC 菌株的生物膜能力进行体外筛选,发现了菌株的显著变异性,并确定 UPEC 12 号(UPEC12)在 28 ℃ 和 37 ℃ 下具有很强的生物膜形成能力。包括延时显微镜和双光子在内的非介入显微镜发现,UPEC12 的生物膜结构具有显著的水平和垂直异质性。我们发现 Curli 的表达具有区域特异性,其定位从生物膜平坦中心区域的底部转移到地形复杂的中间区域的上表面。在研究 rdar 形态是否会影响生物膜表面的润湿性时,我们发现纤维素引导的卷曲纳米结构,而不是 rdar 宏结构,会增加生物膜的疏水性。通过提供超高时空分辨率的新见解,我们展示了对原生生物膜的非干预性分析将如何促进下一代对 UPEC 生物膜生长过程中 ECM 成分的作用及其对UTI 发病机制的贡献的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biofilm
Biofilm MICROBIOLOGY-
CiteScore
7.50
自引率
1.50%
发文量
30
审稿时长
57 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信