Improved bounds for the zeros of the chromatic polynomial via Whitney's Broken Circuit Theorem

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Matthew Jenssen , Viresh Patel , Guus Regts
{"title":"Improved bounds for the zeros of the chromatic polynomial via Whitney's Broken Circuit Theorem","authors":"Matthew Jenssen ,&nbsp;Viresh Patel ,&nbsp;Guus Regts","doi":"10.1016/j.jctb.2024.06.005","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that for any graph <em>G</em> of maximum degree at most Δ, the zeros of its chromatic polynomial <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> (in <span><math><mi>C</mi></math></span>) lie inside the disc of radius 5.94Δ centered at 0. This improves on the previously best known bound of approximately 6.91Δ.</p><p>We also obtain improved bounds for graphs of high girth. We prove that for every <em>g</em> there is a constant <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> such that for any graph <em>G</em> of maximum degree at most Δ and girth at least <em>g</em>, the zeros of its chromatic polynomial <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> lie inside the disc of radius <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>g</mi></mrow></msub><mi>Δ</mi></math></span> centered at 0, where <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> is the solution to a certain optimization problem. In particular, <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>&lt;</mo><mn>5</mn></math></span> when <span><math><mi>g</mi><mo>≥</mo><mn>5</mn></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>&lt;</mo><mn>4</mn></math></span> when <span><math><mi>g</mi><mo>≥</mo><mn>25</mn></math></span> and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> tends to approximately 3.86 as <span><math><mi>g</mi><mo>→</mo><mo>∞</mo></math></span>.</p><p>Key to the proof is a classical theorem of Whitney which allows us to relate the chromatic polynomial of a graph <em>G</em> to the generating function of so-called broken-circuit-free forests in <em>G</em>. We also establish a zero-free disc for the generating function of all forests in <em>G</em> (aka the partition function of the arboreal gas) which may be of independent interest.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S009589562400056X/pdfft?md5=75decf318d359a608bc9f520805078ff&pid=1-s2.0-S009589562400056X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009589562400056X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that for any graph G of maximum degree at most Δ, the zeros of its chromatic polynomial χG(x) (in C) lie inside the disc of radius 5.94Δ centered at 0. This improves on the previously best known bound of approximately 6.91Δ.

We also obtain improved bounds for graphs of high girth. We prove that for every g there is a constant Kg such that for any graph G of maximum degree at most Δ and girth at least g, the zeros of its chromatic polynomial χG(x) lie inside the disc of radius KgΔ centered at 0, where Kg is the solution to a certain optimization problem. In particular, Kg<5 when g5 and Kg<4 when g25 and Kg tends to approximately 3.86 as g.

Key to the proof is a classical theorem of Whitney which allows us to relate the chromatic polynomial of a graph G to the generating function of so-called broken-circuit-free forests in G. We also establish a zero-free disc for the generating function of all forests in G (aka the partition function of the arboreal gas) which may be of independent interest.

通过惠特尼断路定理改进色度多项式的零点界限
我们证明,对于任何最大度为 Δ 的图 G,其色度多项式 χG(x)(C 中)的零点位于以 0 为圆心、半径为 5.94Δ 的圆盘内。我们证明,对于每个 g,都有一个常数 Kg,使得对于最大度至多为 Δ、周长至少为 g 的任何图 G,其色度多项式 χG(x) 的零点都位于以 0 为圆心、半径为 KgΔ 的圆盘内,其中 Kg 是某个优化问题的解。证明的关键是惠特尼的一个经典定理,它使我们能够将图 G 的色度多项式与 G 中所谓无断路森林的生成函数联系起来。我们还为 G 中所有森林的生成函数(又称树气的分割函数)建立了一个无零圆盘,这可能会引起人们的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信