{"title":"Asymmetric dual-metal-hybridization in dual-atom dimers trigger a spin transition for electrochemical degradation from nitrate to ammonia","authors":"","doi":"10.1016/j.susc.2024.122549","DOIUrl":null,"url":null,"abstract":"<div><p>The dual-atom dimer with half-filled 3d orbital demonstrates a great advantage in electrochemical degradation from nitrate to ammonia, because their binding interaction and electron transfer between reactants and active sites are spin-dependent. Herein, we suggest a local structure distortion caused by a bimetallic hybridization to regulate the spin configuration from low to high by implanting one Fe atom into the Mn/Mn dimer on holey nitrogen-doped graphene, which makes the Mn magnetic moment increase to 3.31 μ<sub>B</sub> from 0.48 μ<sub>B</sub>. Meanwhile, the activation energy of the formed *NOH at rate-limiting step can be decreased to 0.79 eV, which is obviously lower than the pristine Fe/Fe (1.38 eV) and Mn/Mn (1.12 eV) dimers. These findings enlighten an intriguing strategy to enhance the reactive activity of dual-atom catalysts by regulating their spin configuration.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602824001006","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The dual-atom dimer with half-filled 3d orbital demonstrates a great advantage in electrochemical degradation from nitrate to ammonia, because their binding interaction and electron transfer between reactants and active sites are spin-dependent. Herein, we suggest a local structure distortion caused by a bimetallic hybridization to regulate the spin configuration from low to high by implanting one Fe atom into the Mn/Mn dimer on holey nitrogen-doped graphene, which makes the Mn magnetic moment increase to 3.31 μB from 0.48 μB. Meanwhile, the activation energy of the formed *NOH at rate-limiting step can be decreased to 0.79 eV, which is obviously lower than the pristine Fe/Fe (1.38 eV) and Mn/Mn (1.12 eV) dimers. These findings enlighten an intriguing strategy to enhance the reactive activity of dual-atom catalysts by regulating their spin configuration.
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.