A deep learning model to extract the interphase’s characteristics in microstructures using macroscopic responses

IF 4.3 3区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mohammadreza Mohammadnejad, Majid Safarabadi, Mojtaba Haghighi-Yazdi
{"title":"A deep learning model to extract the interphase’s characteristics in microstructures using macroscopic responses","authors":"Mohammadreza Mohammadnejad,&nbsp;Majid Safarabadi,&nbsp;Mojtaba Haghighi-Yazdi","doi":"10.1016/j.eml.2024.102203","DOIUrl":null,"url":null,"abstract":"<div><p>This study addresses the challenge of directly measuring the mechanical and geometrical properties of the interphase region in multiphase microstructures due to its small volume. Despite the limited volume, the interphase’s properties can dramatically affect the macroscopic responses, such as elastic modulus in two directions and Poisson’s ratio, because it connects the main parts together. This work proposes a hybrid fusion deep learning model capable of accurately extracting interphase properties, including elastic modulus, Poisson’s ratio, and thickness, using both the microstructural arrangement image and the macroscopic responses of the microstructure as its inputs. To provide the required dataset, 2500 microstructures are generated using the Random Sequential Expansion (RSE) algorithm. Following microstructure generation, homogenization is applied, deriving the effective longitudinal elastic modulus and major Poisson’s ratio through the Rule of Mixture (ROM) method, complemented by the effective transverse elastic modulus obtained from numerical Finite Element (FE) modeling. The hybrid fusion model is trained using 80 % of the dataset, with the remaining instances used for model performance assessment. The R-squared value of 0.94 for the testing dataset demonstrates the model’s high accuracy in predicting interphase characteristics. The proposed model is prooved to be a solid tool for extracting the interphase properties with much less computational costs and time consumption of optimization algorithms and experiments such as atomic force microscopy and nanoindentation.</p></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"71 ","pages":"Article 102203"},"PeriodicalIF":4.3000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235243162400083X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses the challenge of directly measuring the mechanical and geometrical properties of the interphase region in multiphase microstructures due to its small volume. Despite the limited volume, the interphase’s properties can dramatically affect the macroscopic responses, such as elastic modulus in two directions and Poisson’s ratio, because it connects the main parts together. This work proposes a hybrid fusion deep learning model capable of accurately extracting interphase properties, including elastic modulus, Poisson’s ratio, and thickness, using both the microstructural arrangement image and the macroscopic responses of the microstructure as its inputs. To provide the required dataset, 2500 microstructures are generated using the Random Sequential Expansion (RSE) algorithm. Following microstructure generation, homogenization is applied, deriving the effective longitudinal elastic modulus and major Poisson’s ratio through the Rule of Mixture (ROM) method, complemented by the effective transverse elastic modulus obtained from numerical Finite Element (FE) modeling. The hybrid fusion model is trained using 80 % of the dataset, with the remaining instances used for model performance assessment. The R-squared value of 0.94 for the testing dataset demonstrates the model’s high accuracy in predicting interphase characteristics. The proposed model is prooved to be a solid tool for extracting the interphase properties with much less computational costs and time consumption of optimization algorithms and experiments such as atomic force microscopy and nanoindentation.

利用宏观响应提取微结构中相间特性的深度学习模型
由于多相微结构中相间区域的体积较小,因此直接测量相间区域的机械和几何特性是一项挑战。尽管体积有限,但相间区的特性会显著影响宏观响应,如两个方向的弹性模量和泊松比,因为它将主要部分连接在一起。本研究提出了一种混合融合深度学习模型,该模型能够利用微观结构排列图像和微观结构的宏观响应作为输入,准确提取相间特性,包括弹性模量、泊松比和厚度。为了提供所需的数据集,使用随机顺序展开(RSE)算法生成了 2500 个微观结构。生成微结构后,采用均质化方法,通过混合规则(ROM)方法推导出有效纵向弹性模量和主要泊松比,并通过数值有限元(FE)建模获得有效横向弹性模量作为补充。混合融合模型使用 80% 的数据集进行训练,其余实例用于模型性能评估。测试数据集的 R 平方值为 0.94,表明该模型在预测相间特性方面具有很高的准确性。所提出的模型被证明是提取相间特性的可靠工具,其计算成本和时间消耗大大低于优化算法和原子力显微镜及纳米压痕等实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Extreme Mechanics Letters
Extreme Mechanics Letters Engineering-Mechanics of Materials
CiteScore
9.20
自引率
4.30%
发文量
179
审稿时长
45 days
期刊介绍: Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信