Subhojit Shaw , Aparajita Chattopadhyay , Karikkathil C. Arun Kumar
{"title":"Variation of ecosystem resilience across the anthropogenic biomes of India: A comprehensive analysis","authors":"Subhojit Shaw , Aparajita Chattopadhyay , Karikkathil C. Arun Kumar","doi":"10.1016/j.qsa.2024.100214","DOIUrl":null,"url":null,"abstract":"<div><p>Quantifying ecosystem resilience under drought is crucial for sustainable development strategies. This study aims to investigate the spatial and temporal variability of Net Primary Productivity (NPP) across anthropogenic biomes in India (2000 to 2020) and to understand the post-drought long-term ecosystem resilience. A time series study of monthly precipitation, standardized precipitation index (SPI), and NPP were applied to understand ecosystem resilience across twenty anthropogenic biomes. Mann-Kendall test was used to quantify the magnitude and direction of the trend. In addition, bivariate raster maps of mean precipitation and soil moisture were presented in relation to ecosystem resilience in India. The forested areas in the Himalayan region and the Western Ghats of India were identified with resilient ecosystem that can withstand climate change. However, the croplands and rangelands were non-resilient to drought, making them vulnerable to climate change. Northern and western part of India falls under catastrophic to critical non-resilient ecosystem. Soil moisture availability in the biome, forest cover, type of land use, agricultural practices, and climate shocks are mainly influencing the resilience of the anthropogenic biomes in India. The resilience assessment can be used by policymakers to plan anthropogenic interventions in harmony with nature.</p></div>","PeriodicalId":34142,"journal":{"name":"Quaternary Science Advances","volume":"15 ","pages":"Article 100214"},"PeriodicalIF":2.9000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666033424000522/pdfft?md5=42b8ca9f40e2f899910a186c1109e6db&pid=1-s2.0-S2666033424000522-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quaternary Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666033424000522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Quantifying ecosystem resilience under drought is crucial for sustainable development strategies. This study aims to investigate the spatial and temporal variability of Net Primary Productivity (NPP) across anthropogenic biomes in India (2000 to 2020) and to understand the post-drought long-term ecosystem resilience. A time series study of monthly precipitation, standardized precipitation index (SPI), and NPP were applied to understand ecosystem resilience across twenty anthropogenic biomes. Mann-Kendall test was used to quantify the magnitude and direction of the trend. In addition, bivariate raster maps of mean precipitation and soil moisture were presented in relation to ecosystem resilience in India. The forested areas in the Himalayan region and the Western Ghats of India were identified with resilient ecosystem that can withstand climate change. However, the croplands and rangelands were non-resilient to drought, making them vulnerable to climate change. Northern and western part of India falls under catastrophic to critical non-resilient ecosystem. Soil moisture availability in the biome, forest cover, type of land use, agricultural practices, and climate shocks are mainly influencing the resilience of the anthropogenic biomes in India. The resilience assessment can be used by policymakers to plan anthropogenic interventions in harmony with nature.