Sun-Joo Cho, Sarah Brown-Schmidt, Sharice Clough, Melissa C Duff
{"title":"Comparing Functional Trend and Learning among Groups in Intensive Binary Longitudinal Eye-Tracking Data using By-Variable Smooth Functions of GAMM.","authors":"Sun-Joo Cho, Sarah Brown-Schmidt, Sharice Clough, Melissa C Duff","doi":"10.1007/s11336-024-09986-1","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a model specification for group comparisons regarding a functional trend over time within a trial and learning across a series of trials in intensive binary longitudinal eye-tracking data. The functional trend and learning effects are modeled using by-variable smooth functions. This model specification is formulated as a generalized additive mixed model, which allowed for the use of the freely available mgcv package (Wood in Package 'mgcv.' https://cran.r-project.org/web/packages/mgcv/mgcv.pdf , 2023) in R. The model specification was applied to intensive binary longitudinal eye-tracking data, where the questions of interest concern differences between individuals with and without brain injury in their real-time language comprehension and how this affects their learning over time. The results of the simulation study show that the model parameters are recovered well and the by-variable smooth functions are adequately predicted in the same condition as those found in the application.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s11336-024-09986-1","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a model specification for group comparisons regarding a functional trend over time within a trial and learning across a series of trials in intensive binary longitudinal eye-tracking data. The functional trend and learning effects are modeled using by-variable smooth functions. This model specification is formulated as a generalized additive mixed model, which allowed for the use of the freely available mgcv package (Wood in Package 'mgcv.' https://cran.r-project.org/web/packages/mgcv/mgcv.pdf , 2023) in R. The model specification was applied to intensive binary longitudinal eye-tracking data, where the questions of interest concern differences between individuals with and without brain injury in their real-time language comprehension and how this affects their learning over time. The results of the simulation study show that the model parameters are recovered well and the by-variable smooth functions are adequately predicted in the same condition as those found in the application.
期刊介绍:
The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.