Dynamical analysis of a stochastic maize streak virus epidemic model with logarithmic Ornstein-Uhlenbeck process.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Qun Liu
{"title":"Dynamical analysis of a stochastic maize streak virus epidemic model with logarithmic Ornstein-Uhlenbeck process.","authors":"Qun Liu","doi":"10.1007/s00285-024-02127-3","DOIUrl":null,"url":null,"abstract":"<p><p>To describe the transmission dynamics of maize streak virus infection, in the paper, we first formulate a stochastic maize streak virus infection model, in which the stochastic fluctuations are depicted by a logarithmic Ornstein-Uhlenbeck process. This approach is reasonable to simulate the random impacts of main parameters both from the biological significance and the mathematical perspective. Then we investigate the detailed dynamics of the stochastic system, including the existence and uniqueness of the global solution, the existence of a stationary distribution, the exponential extinction of the infected maize and infected leafhopper vector. Especially, by solving the five-dimensional algebraic equations corresponding to the stochastic system, we obtain the specific expression of the probability density function near the quasi-endemic equilibrium of the stochastic system, which provides valuable insights into the stationary distribution. Finally, the model is discretized using the Milstein higher-order numerical method to illustrate our theoretical results numerically. Our findings provide a groundwork for better methods of preventing the spread of this type of virus.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02127-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

To describe the transmission dynamics of maize streak virus infection, in the paper, we first formulate a stochastic maize streak virus infection model, in which the stochastic fluctuations are depicted by a logarithmic Ornstein-Uhlenbeck process. This approach is reasonable to simulate the random impacts of main parameters both from the biological significance and the mathematical perspective. Then we investigate the detailed dynamics of the stochastic system, including the existence and uniqueness of the global solution, the existence of a stationary distribution, the exponential extinction of the infected maize and infected leafhopper vector. Especially, by solving the five-dimensional algebraic equations corresponding to the stochastic system, we obtain the specific expression of the probability density function near the quasi-endemic equilibrium of the stochastic system, which provides valuable insights into the stationary distribution. Finally, the model is discretized using the Milstein higher-order numerical method to illustrate our theoretical results numerically. Our findings provide a groundwork for better methods of preventing the spread of this type of virus.

Abstract Image

具有对数 Ornstein-Uhlenbeck 过程的随机玉米条纹病毒流行模型的动态分析。
为了描述玉米条纹病毒感染的传播动态,本文首先建立了一个随机玉米条纹病毒感染模型,其中随机波动由对数奥恩斯坦-乌伦贝克过程来描述。无论从生物学意义还是数学角度来看,这种方法都能合理地模拟主要参数的随机影响。然后,我们研究了随机系统的详细动态,包括全局解的存在性和唯一性、静态分布的存在性、感染玉米和感染叶蝉载体的指数消亡。特别是,通过求解随机系统对应的五维代数方程,我们得到了随机系统准流行平衡附近概率密度函数的具体表达式,为静态分布提供了有价值的启示。最后,我们使用 Milstein 高阶数值方法对模型进行离散化处理,以数值说明我们的理论结果。我们的发现为更好地预防此类病毒的传播提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信