Gas-sensing riboceptors.

IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
RNA Biology Pub Date : 2024-01-01 Epub Date: 2024-07-17 DOI:10.1080/15476286.2024.2379607
Savani Anbalagan
{"title":"Gas-sensing riboceptors.","authors":"Savani Anbalagan","doi":"10.1080/15476286.2024.2379607","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding how cells sense gases or gaseous solutes is a fundamental question in biology and is pivotal for the evolution of molecular and organismal life. In numerous organisms, gases can diffuse into cells, be transported, generated, and sensed. Controlling gases in the cellular environment is essential to prevent cellular and molecular damage due to interactions with gas-dependent free radicals. Consequently, the mechanisms governing acute gas sensing are evolutionarily conserved and have been experimentally elucidated in various organisms. However, the scientific literature on direct gas sensing is largely based on hemoprotein-based gasoreceptors (or sensors). As RNA-based G-quadruplex (G4) structures can also bind to heme, I propose that some ribozymes can act as gas-sensing riboceptors (<b>ribo</b>nucleic acid re<b>ceptors</b>). Additionally, I present a few other ideas for non-heme metal ion- or metal cluster-based gas-sensing riboceptors. Studying riboceptors can help understand the evolutionary origins of cellular and gasocrine signaling.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11259077/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15476286.2024.2379607","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding how cells sense gases or gaseous solutes is a fundamental question in biology and is pivotal for the evolution of molecular and organismal life. In numerous organisms, gases can diffuse into cells, be transported, generated, and sensed. Controlling gases in the cellular environment is essential to prevent cellular and molecular damage due to interactions with gas-dependent free radicals. Consequently, the mechanisms governing acute gas sensing are evolutionarily conserved and have been experimentally elucidated in various organisms. However, the scientific literature on direct gas sensing is largely based on hemoprotein-based gasoreceptors (or sensors). As RNA-based G-quadruplex (G4) structures can also bind to heme, I propose that some ribozymes can act as gas-sensing riboceptors (ribonucleic acid receptors). Additionally, I present a few other ideas for non-heme metal ion- or metal cluster-based gas-sensing riboceptors. Studying riboceptors can help understand the evolutionary origins of cellular and gasocrine signaling.

气体感应核素受体
了解细胞如何感知气体或气态溶质是生物学的一个基本问题,对于分子和生物体生命的进化至关重要。在许多生物体中,气体可以扩散到细胞中,并被运输、生成和感知。控制细胞环境中的气体对于防止细胞和分子因与依赖气体的自由基相互作用而受损至关重要。因此,控制急性气体感应的机制在进化过程中是保守的,并已在各种生物体内得到实验阐明。然而,有关直接气体感应的科学文献主要基于基于血蛋白的气体感受器(或传感器)。由于基于核糖核酸的 G-四重(G4)结构也能与血红素结合,我建议一些核糖酶可以充当气体感应核糖受体(核糖核酸受体)。此外,我还提出了一些关于基于非血红素金属离子或金属簇的气体感应核糖受体的其他想法。研究核糖受体有助于了解细胞和气分泌信号的进化起源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
RNA Biology
RNA Biology 生物-生化与分子生物学
CiteScore
8.60
自引率
0.00%
发文量
82
审稿时长
1 months
期刊介绍: RNA has played a central role in all cellular processes since the beginning of life: decoding the genome, regulating gene expression, mediating molecular interactions, catalyzing chemical reactions. RNA Biology, as a leading journal in the field, provides a platform for presenting and discussing cutting-edge RNA research. RNA Biology brings together a multidisciplinary community of scientists working in the areas of: Transcription and splicing Post-transcriptional regulation of gene expression Non-coding RNAs RNA localization Translation and catalysis by RNA Structural biology Bioinformatics RNA in disease and therapy
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信