Serena Mahnoor, Cristina Molnar, Diego Velázquez, Jose Reina, Salud Llamazares, Jan Peter Heinen, Jaume Mora, Cayetano Gonzalez
{"title":"Human EWS-FLI protein levels and neomorphic functions show a complex, function-specific dose-response relationship in <i>Drosophila</i>.","authors":"Serena Mahnoor, Cristina Molnar, Diego Velázquez, Jose Reina, Salud Llamazares, Jan Peter Heinen, Jaume Mora, Cayetano Gonzalez","doi":"10.1098/rsob.240043","DOIUrl":null,"url":null,"abstract":"<p><p>Ewing sarcoma (EwS) is a cancer that arises in the bones and soft tissues, typically driven by the Ewing's sarcoma breakpoint region 1-Friend leukemia virus integration 1 (EWS-FLI) oncogene. Implementation of genetically modified animal models of EwS has proved difficult largely owing to EWS-FLI's high toxicity. The EWS-FLI<sub>1FS</sub> frameshift variant that circumvents toxicity but is still able to perform key oncogenic functions provided the first study model in <i>Drosophila</i>. However, the quest for <i>Drosophila</i> lines expressing full-length, unmodified EWS-FLI remained open. Here, we show that EWS-FLI<sub>1FS</sub>'s lower toxicity is owed to reduced protein levels caused by its frameshifted C-terminal peptide, and report new strategies through which we have generated <i>Drosophila</i> lines that express full-length, unmodified EWS-FLI. Using these lines, we have found that the upregulation of transcription from GGAA-microsatellites (GGAAμSats) presents a positive linear correlation within a wide range of EWS-FLI protein concentrations. In contrast, rather counterintuitively, GGAAμSats-independent transcriptomic dysregulation presents relatively minor differences across the same range, suggesting that GGAAμSat-dependent and -independent transcriptional upregulation present different kinetics of response with regards to changing EWS-FLI protein concentration. Our results underpin the functional relevance of varying EWS-FLI expression levels and provide experimental tools to investigate, in <i>Drosophila</i>, the effect of the EWS-FLI 'high' and 'low' states that have been reported and are suspected to be important for EwS in humans.</p>","PeriodicalId":19629,"journal":{"name":"Open Biology","volume":"14 7","pages":"240043"},"PeriodicalIF":4.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11251760/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsob.240043","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ewing sarcoma (EwS) is a cancer that arises in the bones and soft tissues, typically driven by the Ewing's sarcoma breakpoint region 1-Friend leukemia virus integration 1 (EWS-FLI) oncogene. Implementation of genetically modified animal models of EwS has proved difficult largely owing to EWS-FLI's high toxicity. The EWS-FLI1FS frameshift variant that circumvents toxicity but is still able to perform key oncogenic functions provided the first study model in Drosophila. However, the quest for Drosophila lines expressing full-length, unmodified EWS-FLI remained open. Here, we show that EWS-FLI1FS's lower toxicity is owed to reduced protein levels caused by its frameshifted C-terminal peptide, and report new strategies through which we have generated Drosophila lines that express full-length, unmodified EWS-FLI. Using these lines, we have found that the upregulation of transcription from GGAA-microsatellites (GGAAμSats) presents a positive linear correlation within a wide range of EWS-FLI protein concentrations. In contrast, rather counterintuitively, GGAAμSats-independent transcriptomic dysregulation presents relatively minor differences across the same range, suggesting that GGAAμSat-dependent and -independent transcriptional upregulation present different kinetics of response with regards to changing EWS-FLI protein concentration. Our results underpin the functional relevance of varying EWS-FLI expression levels and provide experimental tools to investigate, in Drosophila, the effect of the EWS-FLI 'high' and 'low' states that have been reported and are suspected to be important for EwS in humans.
期刊介绍:
Open Biology is an online journal that welcomes original, high impact research in cell and developmental biology, molecular and structural biology, biochemistry, neuroscience, immunology, microbiology and genetics.