Inhalation of Curcumae Rhizoma volatile oil attenuates depression-like behaviours via activating the Nrf2 pathway to alleviate oxidative stress and improve mitochondrial dysfunction.
Meixizi Lai, Dan Su, Zhifu Ai, Ming Yang, Zhentao Zhang, Qi Zhang, Wenxiang Shao, Tao Luo, Genhua Zhu, Yonggui Song
{"title":"Inhalation of Curcumae Rhizoma volatile oil attenuates depression-like behaviours via activating the Nrf2 pathway to alleviate oxidative stress and improve mitochondrial dysfunction.","authors":"Meixizi Lai, Dan Su, Zhifu Ai, Ming Yang, Zhentao Zhang, Qi Zhang, Wenxiang Shao, Tao Luo, Genhua Zhu, Yonggui Song","doi":"10.1093/jpp/rgae082","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Curcumae Rhizoma (CR) is a traditional Chinese medicine used frequently in clinics, which contains volatile components that exhibit various active effects. This study explores the effect of Curcumae Rhizoma volatile oil (CRVO) on depressive mice and its possible mechanism of action.</p><p><strong>Methods: </strong>Chemical composition of CRVO was analysed by GC-MS. DPPH and ABTS free radical scavenging assays were used to evaluate the in vitro antioxidant capacity of CRVO. A chronic unpredictable mild stress (CUMS) model was used to evaluate the antidepressant effect of CRVO. The effects of CRVO on oxidative stress in vivo were investigated using Nissl staining, ELISA and transmission electron microscopy. The Nrf2/HO-1/NQO1 signalling pathway was detected by western blotting and immunofluorescence. ML385, a Nrf2 inhibitor was used to validate the effect of Nrf2 on CUMS mice with CRVO treatment.</p><p><strong>Key findings: </strong>Phytochemical analysis showed that CRVO is rich in its characteristic components, including curzerene (31.1%), curdione (30.56%), and germacrone (12.44%). In vivo, the administration of CRVO significantly ameliorated CUMS-induced depressive-like behaviours. In addition, inhalation of CRVO significantly alleviated the oxidative stress caused by CUMS and improved neuronal damage and mitochondrial dysfunction. The results of mechanistic studies showed that the mechanism of action is related to the Nrf2/HO-1/NQO1 pathway and the antioxidant and antidepressant effects of CRVO were weakened when ML385 was used.</p><p><strong>Conclusions: </strong>In summary, by regulating the Nrf2 pathway, inhalation of CRVO can reduce oxidative stress in depressed mice, thereby reducing neuronal damage and mitochondrial dysfunction to alleviate depression-like behaviours. Our study offers a prospective research foundation to meet the diversity of clinical medication.</p>","PeriodicalId":16960,"journal":{"name":"Journal of Pharmacy and Pharmacology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacy and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jpp/rgae082","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Curcumae Rhizoma (CR) is a traditional Chinese medicine used frequently in clinics, which contains volatile components that exhibit various active effects. This study explores the effect of Curcumae Rhizoma volatile oil (CRVO) on depressive mice and its possible mechanism of action.
Methods: Chemical composition of CRVO was analysed by GC-MS. DPPH and ABTS free radical scavenging assays were used to evaluate the in vitro antioxidant capacity of CRVO. A chronic unpredictable mild stress (CUMS) model was used to evaluate the antidepressant effect of CRVO. The effects of CRVO on oxidative stress in vivo were investigated using Nissl staining, ELISA and transmission electron microscopy. The Nrf2/HO-1/NQO1 signalling pathway was detected by western blotting and immunofluorescence. ML385, a Nrf2 inhibitor was used to validate the effect of Nrf2 on CUMS mice with CRVO treatment.
Key findings: Phytochemical analysis showed that CRVO is rich in its characteristic components, including curzerene (31.1%), curdione (30.56%), and germacrone (12.44%). In vivo, the administration of CRVO significantly ameliorated CUMS-induced depressive-like behaviours. In addition, inhalation of CRVO significantly alleviated the oxidative stress caused by CUMS and improved neuronal damage and mitochondrial dysfunction. The results of mechanistic studies showed that the mechanism of action is related to the Nrf2/HO-1/NQO1 pathway and the antioxidant and antidepressant effects of CRVO were weakened when ML385 was used.
Conclusions: In summary, by regulating the Nrf2 pathway, inhalation of CRVO can reduce oxidative stress in depressed mice, thereby reducing neuronal damage and mitochondrial dysfunction to alleviate depression-like behaviours. Our study offers a prospective research foundation to meet the diversity of clinical medication.
期刊介绍:
JPP keeps pace with new research on how drug action may be optimized by new technologies, and attention is given to understanding and improving drug interactions in the body. At the same time, the journal maintains its established and well-respected core strengths in areas such as pharmaceutics and drug delivery, experimental and clinical pharmacology, biopharmaceutics and drug disposition, and drugs from natural sources. JPP publishes at least one special issue on a topical theme each year.