Capturing cell morphology dynamics with high temporal resolution using single-shot quantitative phase gradient imaging.

IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Journal of Biomedical Optics Pub Date : 2024-06-01 Epub Date: 2024-07-16 DOI:10.1117/1.JBO.29.S2.S22712
Sun Woong Hur, Minsung Kwon, Revathi Manoharaan, Melika Haji Mohammadi, Ashok Zachariah Samuel, Michael P Mulligan, Paul J Hergenrother, Rohit Bhargava
{"title":"Capturing cell morphology dynamics with high temporal resolution using single-shot quantitative phase gradient imaging.","authors":"Sun Woong Hur, Minsung Kwon, Revathi Manoharaan, Melika Haji Mohammadi, Ashok Zachariah Samuel, Michael P Mulligan, Paul J Hergenrother, Rohit Bhargava","doi":"10.1117/1.JBO.29.S2.S22712","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Label-free quantitative phase imaging can potentially measure cellular dynamics with minimal perturbation, motivating efforts to develop faster and more sensitive instrumentation. We characterize fast, single-shot quantitative phase gradient microscopy (ss-QPGM) that simultaneously acquires multiple polarization components required to reconstruct phase images. We integrate a computationally efficient least squares algorithm to provide real-time, video-rate imaging (up to <math><mrow><mn>75</mn> <mtext>  frames</mtext> <mo>/</mo> <mi>s</mi></mrow> </math> ). The developed instrument was used to observe changes in cellular morphology and correlate these to molecular measures commonly obtained by staining.</p><p><strong>Aim: </strong>We aim to characterize a fast approach to ss-QPGM and record morphological changes in single-cell phase images. We also correlate these with biochemical changes indicating cell death using concurrently acquired fluorescence images.</p><p><strong>Approach: </strong>Here, we examine nutrient deprivation and anticancer drug-induced cell death in two different breast cell lines, <i>viz.</i>, M2 and MCF7. Our approach involves in-line measurements of ss-QPGM and fluorescence imaging of the cells biochemically labeled for viability.</p><p><strong>Results: </strong>We validate the accuracy of the phase measurement using a USAF1951 pattern phase target. The ss-QPGM system resolves <math><mrow><mn>912.3</mn> <mtext>  </mtext> <mi>lp</mi> <mo>/</mo> <mi>mm</mi></mrow> </math> , and our analysis scheme accurately retrieves the phase with a high correlation coefficient ( <math><mrow><mo>∼</mo> <mn>0.99</mn></mrow> </math> ), as measured by calibrated sample thicknesses. Analyzing the contrast in phase, we estimate the spatial resolution achievable to be <math><mrow><mn>0.55</mn> <mtext>  </mtext> <mi>μ</mi> <mi>m</mi></mrow> </math> for this microscope. ss-QPGM time-lapse live-cell imaging reveals multiple intracellular and morphological changes during biochemically induced cell death. Inferences from co-registered images of quantitative phase and fluorescence suggest the possibility of necrosis, which agrees with previous findings.</p><p><strong>Conclusions: </strong>Label-free ss-QPGM with high-temporal resolution and high spatial fidelity is demonstrated. Its application for monitoring dynamic changes in live cells offers promising prospects.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 Suppl 2","pages":"S22712"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249975/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.29.S2.S22712","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Significance: Label-free quantitative phase imaging can potentially measure cellular dynamics with minimal perturbation, motivating efforts to develop faster and more sensitive instrumentation. We characterize fast, single-shot quantitative phase gradient microscopy (ss-QPGM) that simultaneously acquires multiple polarization components required to reconstruct phase images. We integrate a computationally efficient least squares algorithm to provide real-time, video-rate imaging (up to 75   frames / s ). The developed instrument was used to observe changes in cellular morphology and correlate these to molecular measures commonly obtained by staining.

Aim: We aim to characterize a fast approach to ss-QPGM and record morphological changes in single-cell phase images. We also correlate these with biochemical changes indicating cell death using concurrently acquired fluorescence images.

Approach: Here, we examine nutrient deprivation and anticancer drug-induced cell death in two different breast cell lines, viz., M2 and MCF7. Our approach involves in-line measurements of ss-QPGM and fluorescence imaging of the cells biochemically labeled for viability.

Results: We validate the accuracy of the phase measurement using a USAF1951 pattern phase target. The ss-QPGM system resolves 912.3    lp / mm , and our analysis scheme accurately retrieves the phase with a high correlation coefficient ( 0.99 ), as measured by calibrated sample thicknesses. Analyzing the contrast in phase, we estimate the spatial resolution achievable to be 0.55    μ m for this microscope. ss-QPGM time-lapse live-cell imaging reveals multiple intracellular and morphological changes during biochemically induced cell death. Inferences from co-registered images of quantitative phase and fluorescence suggest the possibility of necrosis, which agrees with previous findings.

Conclusions: Label-free ss-QPGM with high-temporal resolution and high spatial fidelity is demonstrated. Its application for monitoring dynamic changes in live cells offers promising prospects.

利用单次定量相位梯度成像技术,以高时间分辨率捕捉细胞形态动态。
意义重大:无标记的定量相位成像技术有可能以最小的扰动测量细胞动态,这促使人们努力开发更快、更灵敏的仪器。我们描述了快速单次定量相位梯度显微镜(ss-QPGM)的特点,它能同时获取重建相位图像所需的多个偏振成分。我们整合了一种计算效率极高的最小二乘算法,以提供实时、视频速率成像(高达 75 帧/秒)。目的:我们的目标是鉴定一种快速的 ss-QPGM 方法,并记录单细胞相位图像中的形态变化。我们还利用同时获取的荧光图像将这些变化与表明细胞死亡的生化变化联系起来:在此,我们研究了两种不同乳腺细胞系(即 M2 和 MCF7)中营养剥夺和抗癌药物诱导的细胞死亡。我们的方法包括在线测量 ss-QPGM 和对细胞进行荧光成像,并对细胞进行生化标记以确定其存活率:结果:我们使用 USAF1951 模式相位目标验证了相位测量的准确性。ss-QPGM系统的分辨率为912.3 lp / mm,根据校准样本厚度的测量结果,我们的分析方案以高相关系数(∼ 0.99)准确地检索了相位。通过分析相位对比度,我们估计该显微镜可达到的空间分辨率为 0.55 μ m。从定量相位和荧光的共存图像推断出细胞坏死的可能性,这与之前的研究结果一致:结论:无标记 ss-QPGM 具有高时间分辨率和高空间保真度。结论:无标记 QPGM 具有高时间分辨率和高空间保真度,其在监测活细胞动态变化方面的应用前景广阔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信