{"title":"Enhancing high-efficient cadmium biosorption of <i>Escherichia coli</i> via cell surface displaying metallothionien CUP1.","authors":"Nan He, Ziru Wang, Ling Lei, Changxuan Chen, Yixian Qin, Jingxiang Tang, Kecheng Dai, Heng Xu","doi":"10.1080/09593330.2024.2375006","DOIUrl":null,"url":null,"abstract":"<p><p>Cadmium (Cd) is one of the common heavy metal pollutants in soil, which can induce various diseases and pose a serious threat to human health. Metallothioneins (MTs) are well-known for their excellent metal binding ability due to a high content of cysteine, which has great potential for heavy metal chelation. In this study, we used the <i>Escherichia coli</i> (<i>E. coli</i>) surface display system LPP-OmpA to construct a recombinant plasmid pBSD-LCF encoding LPP-OmpA-CUP1-Flag fusion protein. Then we displayed the metallothionein CUP1 from <i>Saccharomyces cerevisiae</i> on <i>E. coli</i> DH5α surface for Cd removing. The feasibility of surface display of metallothionein CUP1 in recombinant <i>E. coli</i> DH5α (pBSD-LCF) by Lpp-OmpA system was proved by flow cytometry and western blot analysis, and the specificity of the fusion protein in the recombinant strain was also verified. The results showed that the Cd<sup>2+</sup> resistance capacity of DH5α (pBSD-LCF) was highly enhanced by about 200%. Fourier-transform infrared spectroscopy showed that sulfhydryl and sulfonyl groups were involved in Cd<sup>2+</sup> binding to cell surface of DH5α (pBSD-LCF). Meanwhile, Cd removal rate by DH5α (pBSD-LCF) was promoted to 95.2%. Thus, the recombinant strain <i>E. coli</i> DH5α (pBSD-LCF) can effectively chelate environmental metals, and the cell surface expression of metallothionein on <i>E. coli</i> can provide new ideas and directions for heavy metals remediation.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1021-1030"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2024.2375006","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cadmium (Cd) is one of the common heavy metal pollutants in soil, which can induce various diseases and pose a serious threat to human health. Metallothioneins (MTs) are well-known for their excellent metal binding ability due to a high content of cysteine, which has great potential for heavy metal chelation. In this study, we used the Escherichia coli (E. coli) surface display system LPP-OmpA to construct a recombinant plasmid pBSD-LCF encoding LPP-OmpA-CUP1-Flag fusion protein. Then we displayed the metallothionein CUP1 from Saccharomyces cerevisiae on E. coli DH5α surface for Cd removing. The feasibility of surface display of metallothionein CUP1 in recombinant E. coli DH5α (pBSD-LCF) by Lpp-OmpA system was proved by flow cytometry and western blot analysis, and the specificity of the fusion protein in the recombinant strain was also verified. The results showed that the Cd2+ resistance capacity of DH5α (pBSD-LCF) was highly enhanced by about 200%. Fourier-transform infrared spectroscopy showed that sulfhydryl and sulfonyl groups were involved in Cd2+ binding to cell surface of DH5α (pBSD-LCF). Meanwhile, Cd removal rate by DH5α (pBSD-LCF) was promoted to 95.2%. Thus, the recombinant strain E. coli DH5α (pBSD-LCF) can effectively chelate environmental metals, and the cell surface expression of metallothionein on E. coli can provide new ideas and directions for heavy metals remediation.
期刊介绍:
Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies.
Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months.
Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current